doi: 10.3934/dcdss.2020084

Singular parabolic equations with interior degeneracy and non smooth coefficients: The Neumann case

1. 

Dipartimento di Matematica, Università di Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy

2. 

Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy

* Corresponding author: Dimitri Mugnai

To Angelo on the occasion of his 70th birthday, with esteem

Received  March 2018 Revised  November 2018 Published  June 2019

Fund Project: The first author is a member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). She is supported by the GNAMPA project 2017 Comportamento asintotico e controllo di equazioni di evoluzione non lineari and by the FFABR "Fondo per il finanziamento delle attività base di ricerca" 2017. The second author is a member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and supported by the 2017 INdAM-GNAMPA Project Equazioni Differenziali Non Lineari. He is also supported by the Italian MIUR project Variational methods, with applications to problems in mathematical physics and geometry (2015KB9WPT_009) and by the FFABR "Fondo per il finanziamento delle attività base di ricerca" 2017

We establish Hardy - Poincaré and Carleman estimates for non-smooth degenerate/singular parabolic operators in divergence form with Neumann boundary conditions. The degeneracy and the singularity occur both in the interior of the spatial domain. We apply these inequalities to deduce well-posedness and null controllability for the associated evolution problem.

Citation: Genni Fragnelli, Dimitri Mugnai. Singular parabolic equations with interior degeneracy and non smooth coefficients: The Neumann case. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020084
References:
[1]

I. BoutaayamouG. Fragnelli and L. Maniar, Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions, J. Anal. Math., 135 (2018), 1-35. doi: 10.1007/s11854-018-0030-2. Google Scholar

[2]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of the degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190. Google Scholar

[3] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Clarendon Press, Oxford, 1998. Google Scholar
[4]

G. Fragnelli, Interior degenerate/singular parabolic equations in nondivergence form: well-posedness and Carleman estimates, J. Differential Equations, 260 (2016), 1314-1371. doi: 10.1016/j.jde.2015.09.019. Google Scholar

[5]

G. Fragnelli and D. Mugnai, Carleman estimates and observability inequalities for parabolic equations with interior degeneracy, Advances in Nonlinear Analysis, 2 (2013), 339-378. doi: 10.1515/anona-2013-0015. Google Scholar

[6]

G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations, Memoirs Amer. Math. Soc., 242 (2016), v+84pp. doi: 10.1090/memo/1146. Google Scholar

[7]

G. Fragnelli and D. Mugnai, Carleman estimates for singular parabolic equations with interior degeneracy and non smooth coefficients, Adv. Nonlinear Anal., 6 (2017), 61-84. doi: 10.1515/anona-2015-0163. Google Scholar

[8]

G. Fragnelli and D. Mugnai, Controllability of strongly degenerate parabolic problems with strongly singular potentials, Electron. J. Qual. Theory Differ. Equ., 2018 (2018), Paper No. 50, 11 pp. Google Scholar

[9]

J. Le Rousseau and G. Lebeau, On carleman estimates for elliptic and parabolic operators. applications to unique continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var., 18 (2012), 712-747. doi: 10.1051/cocv/2011168. Google Scholar

[10]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. Ⅰ. Grundlehren Math. Wiss. 181. Springer-Verlag, New York-Heidelberg, 1972. Google Scholar

[11]

S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line, Trans. Amer. Math. Soc., 353 (2001), 1635-1659. doi: 10.1090/S0002-9947-00-02665-9. Google Scholar

[12]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Second edition., Texts in Applied Mathematics, 13. Springer-Verlag, New York, 2004. Google Scholar

[13]

M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25 (2009), 123013 (75pp). doi: 10.1088/0266-5611/25/12/123013. Google Scholar

show all references

References:
[1]

I. BoutaayamouG. Fragnelli and L. Maniar, Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions, J. Anal. Math., 135 (2018), 1-35. doi: 10.1007/s11854-018-0030-2. Google Scholar

[2]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of the degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190. Google Scholar

[3] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Clarendon Press, Oxford, 1998. Google Scholar
[4]

G. Fragnelli, Interior degenerate/singular parabolic equations in nondivergence form: well-posedness and Carleman estimates, J. Differential Equations, 260 (2016), 1314-1371. doi: 10.1016/j.jde.2015.09.019. Google Scholar

[5]

G. Fragnelli and D. Mugnai, Carleman estimates and observability inequalities for parabolic equations with interior degeneracy, Advances in Nonlinear Analysis, 2 (2013), 339-378. doi: 10.1515/anona-2013-0015. Google Scholar

[6]

G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations, Memoirs Amer. Math. Soc., 242 (2016), v+84pp. doi: 10.1090/memo/1146. Google Scholar

[7]

G. Fragnelli and D. Mugnai, Carleman estimates for singular parabolic equations with interior degeneracy and non smooth coefficients, Adv. Nonlinear Anal., 6 (2017), 61-84. doi: 10.1515/anona-2015-0163. Google Scholar

[8]

G. Fragnelli and D. Mugnai, Controllability of strongly degenerate parabolic problems with strongly singular potentials, Electron. J. Qual. Theory Differ. Equ., 2018 (2018), Paper No. 50, 11 pp. Google Scholar

[9]

J. Le Rousseau and G. Lebeau, On carleman estimates for elliptic and parabolic operators. applications to unique continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var., 18 (2012), 712-747. doi: 10.1051/cocv/2011168. Google Scholar

[10]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. Ⅰ. Grundlehren Math. Wiss. 181. Springer-Verlag, New York-Heidelberg, 1972. Google Scholar

[11]

S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line, Trans. Amer. Math. Soc., 353 (2001), 1635-1659. doi: 10.1090/S0002-9947-00-02665-9. Google Scholar

[12]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Second edition., Texts in Applied Mathematics, 13. Springer-Verlag, New York, 2004. Google Scholar

[13]

M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25 (2009), 123013 (75pp). doi: 10.1088/0266-5611/25/12/123013. Google Scholar

[1]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[2]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations & Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[3]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[4]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[5]

Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121

[6]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[7]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[8]

Nicola Gigli, Sunra Mosconi. The Abresch-Gromoll inequality in a non-smooth setting. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1481-1509. doi: 10.3934/dcds.2014.34.1481

[9]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[10]

Daniele Cassani, Bernhard Ruf, Cristina Tarsi. On the capacity approach to non-attainability of Hardy's inequality in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 245-250. doi: 10.3934/dcdss.2019017

[11]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

[12]

Aleksandra Čižmešija, Iva Franjić, Josip Pečarić, Dora Pokaz. On a family of means generated by the Hardy-Littlewood maximal inequality. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 223-231. doi: 10.3934/naco.2012.2.223

[13]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[14]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[15]

Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153

[16]

Jorge A. Becerril, Javier F. Rosenblueth. Necessity for isoperimetric inequality constraints. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1129-1158. doi: 10.3934/dcds.2017047

[17]

Gisella Croce, Bernard Dacorogna. On a generalized Wirtinger inequality. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1329-1341. doi: 10.3934/dcds.2003.9.1329

[18]

Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71

[19]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[20]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

2018 Impact Factor: 0.545

Article outline

[Back to Top]