doi: 10.3934/dcdss.2020082

Precise estimates for biorthogonal families under asymptotic gap conditions

1. 

Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 1, 00133 Roma, Italy

2. 

Institut de Mathématiques de Toulouse, UMR CNRS 5219, Université Paul Sabatier Toulouse Ⅲ, 118 route de Narbonne, 31 062 Toulouse Cedex 4, France

* Corresponding author

Received  June 2017 Revised  February 2018 Published  June 2019

Fund Project: This research was partly supported by the Institut Mathematique de Toulouse and Istituto Nazionale di Alta Matematica through funds provided by the national group GNAMPA and the GDRE CONEDP

A classical and useful way to study controllability problems is the moment method developed by Fattorini-Russell [12, 13], which is based on the construction of suitable biorthogonal families. Several recent problems exhibit the same behavior: the eigenvalues of the problem satisfy a uniform but rather 'bad' gap condition, and a rather 'good' but only asymptotic one. The goal of this work is to obtain general and precise upper and lower bounds for biorthogonal families under these two gap conditions, and thus to measure the influence of the 'bad' gap condition and the good influence of the 'good' asymptotic one. To achieve our goals, we extend some of the general results by Fattorini-Russell [12, 13] concerning biorthogonal families, using complex analysis techniques that were developed by Seidman [36], Güichal [20], Tenenbaum-Tucsnak [37] and Lissy [27, 28].

Citation: Piermarco Cannarsa, Patrick Martinez, Judith Vancostenoble. Precise estimates for biorthogonal families under asymptotic gap conditions. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020082
References:
[1]

F. Ammar KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials, J. Math. Pures Appl., 96 (2011), 555-590. doi: 10.1016/j.matpur.2011.06.005. Google Scholar

[2]

K. BeauchardP. Cannarsa and R. Guglielmi, Null controllability of Grushin-type operators in dimension two, J. Eur. Math. Soc. (JEMS), 16 (2014), 67-101. doi: 10.4171/JEMS/428. Google Scholar

[3]

K. BeauchardL. Miller and M. Morancey, 2D Grushin-type equations: Minimal time and null controllable data, J. Differ. Equations, 259 (2015), 5813-5845. doi: 10.1016/j.jde.2015.07.007. Google Scholar

[4]

P. CannarsaP. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19. doi: 10.1137/04062062X. Google Scholar

[5]

P. Cannarsa, P. Martinez and J. Vancostenoble, Global Carleman estimates for degenerate parabolic operators with applications, Mem. Am. Math. Soc., 239 (2016), ix+209 pp. doi: 10.1090/memo/1133. Google Scholar

[6]

P. CannarsaP. Martinez and J. Vancostenoble, The cost of controlling weakly degenerate parabolic equations by boundary controls, Math. Control Relat. Fields, 7 (2017), 171-211. doi: 10.3934/mcrf.2017006. Google Scholar

[7]

P. Cannarsa, P. Martinez and J. Vancostenoble, The cost of controlling strongly degenerate parabolic equations, to appear in ESAIM, Control Optim. Calc. Var..Google Scholar

[8]

J. M. Coron and S. Guerrero, Singular optimal control: A linear 1-D parabolic-hyperbolic example, Asymp. Anal., 44 (2005), 237-257. Google Scholar

[9]

J. Dardé and S. Ervedoza, On the reachable set for the one-dimensional heat equation, SIAM J. Control Optim., 56 (2018), 1692–1715, arXiv: 1609.02692. doi: 10.1137/16M1093215. Google Scholar

[10]

S. Ervedoza and E. Zuazua, Sharp observability estimates for heat equations, Arch. Ration. Mech. Anal., 202 (2011), 975-1017. doi: 10.1007/s00205-011-0445-8. Google Scholar

[11]

W. N. Everitt, A catalogue of Sturm-Liouville differential equations, in Sturm-Liouville Theory, Birkhäuser, (2005), 271–331. doi: 10.1007/3-7643-7359-8_12. Google Scholar

[12]

H. O. Fattorini and D. L. Russel, Exact Controllability Theorems for Linear Parabolic Equations in One Space Dimension, Arch. Rat. Mech. Anal., 43 (1971), 272-292. doi: 10.1007/BF00250466. Google Scholar

[13]

H. O. Fattorini and D. L. Russel, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 32 (1974/75), 45-69. doi: 10.1090/qam/510972. Google Scholar

[14]

H. O. Fattorini, Boundary control of temperature distributions in a parallelepipedon, SIAM J. Control, 13 (1975), 1-13. doi: 10.1137/0313001. Google Scholar

[15]

E. Fernandez-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514. Google Scholar

[16]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Ser. 34, Seoul National University, Seoul, 1996. Google Scholar

[17]

O. Glass, A complex-analytic approach to the problem of uniform controllability of transport equation in the vanishing viscosity limit, J. Funct. Anal., 258 (2010), 852-868. doi: 10.1016/j.jfa.2009.06.035. Google Scholar

[18]

M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., 52 (2014), 2037-2054. doi: 10.1137/120901374. Google Scholar

[19]

M. Gueye and P. Lissy, Singular optimal control of a 1-D parabolic-hyperbolic degenerate equation, ESAIM Control Optim. Calc. Var., 22 (2016), 1184-1203. doi: 10.1051/cocv/2016036. Google Scholar

[20]

E. N. Güichal, A lower bound of the norm of the control operator for the heat equation, J. Math. Anal. Appl., 110 (1985), 519-527. doi: 10.1016/0022-247X(85)90313-0. Google Scholar

[21]

S. Hansen, Bounds on functions biorthogonal to sets of complex exponentials; control of damped elastic systems, J. Math. Anal. Appl., 158 (1991), 487-508. doi: 10.1016/0022-247X(91)90252-U. Google Scholar

[22]

A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations dune plaque rectangulaire, J. Math. Pures Appl., 68 (1989), 457-465. Google Scholar

[23]

E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen. Band 1: Gewöhnliche Differentialgleichungen, Neunte Auflage. Mit einem Vorwort von Detlef Kamke. B. G. Teubner, Stuttgart, 1977. Google Scholar

[24]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer, Berlin, 2005. Google Scholar

[25]

N. N. Lebedev, Special Functions and Their Applications, Dover Publications, New York, 1972. Google Scholar

[26]

J.-L. Lions and E. Zuazua, On the cost of controlling unstable systems: The case of boundary controls, J. Anal. Math., 73 (1997), 225-249. doi: 10.1007/BF02788145. Google Scholar

[27]

P. Lissy, On the cost of fast controls for some families of dispersive or parabolic equations in one space dimension, SIAM J. Control Optim., 52 (2014), 2651-2676. doi: 10.1137/140951746. Google Scholar

[28]

P. Lissy, Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transport-diffusion equation, J. Differ. Equations, 259 (2015), 5331-5352. doi: 10.1016/j.jde.2015.06.031. Google Scholar

[29]

P. MartinL. Rosier and P. Rouchon, Null controllability of one-dimensional parabolic equations using flatness, Automatica J. IFAC, 50 (2014), 3067-3076. doi: 10.1016/j.automatica.2014.10.049. Google Scholar

[30]

P. MartinL. Rosier and P. Rouchon, On the reachable states for the boundary control of the heat equation, Applied Mathematics Research eXpress, 2016 (2016), 181-216. doi: 10.1093/amrx/abv013. Google Scholar

[31]

L. Miller, Geometric bounds on the growth rate of null controllability cost for the heat equation in small time, J. Differ. Equations, 204 (2004), 202-226. doi: 10.1016/j.jde.2004.05.007. Google Scholar

[32]

R. M. Redheffer, Elementary remarks on completeness, Duke Math. J., 35 (1968), 103-116. doi: 10.1215/S0012-7094-68-03511-4. Google Scholar

[33]

L. Schwartz, Étude des Sommes D'exponentielles, deuxième édition, Hermann, Paris, 1959. Google Scholar

[34]

T. I. Seidman, Time-invariance of the reachable set for linear control problems, J. Math. Anal. Appl., 72 (1979), 17-20. doi: 10.1016/0022-247X(79)90271-3. Google Scholar

[35]

T. I. Seidman, Two results on exact boundary control of parabolic equations, Appl. Math. Optim., 11 (1984), 145-152. doi: 10.1007/BF01442174. Google Scholar

[36]

T. I. SeidmanS. A. Avdonin and S. A. Ivanov, The "window problem" for series of complex exponentials, J. Fourier Anal. Appl., 6 (2000), 233-254. doi: 10.1007/BF02511154. Google Scholar

[37]

G. Tenenbaum and M. Tucsnak, New blow-up rates for fast controls of Schrodinger and heat equations, J. Differ. Equations, 243 (2007), 70-100. doi: 10.1016/j.jde.2007.06.019. Google Scholar

[38]

G. N. Watson, A Treatise on the Theory of Bessel Functions, second edition, Cambridge University Press, Cambridge, 1944. Google Scholar

[39]

R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980. Google Scholar

show all references

References:
[1]

F. Ammar KhodjaA. BenabdallahM. González-Burgos and L. de Teresa, The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials, J. Math. Pures Appl., 96 (2011), 555-590. doi: 10.1016/j.matpur.2011.06.005. Google Scholar

[2]

K. BeauchardP. Cannarsa and R. Guglielmi, Null controllability of Grushin-type operators in dimension two, J. Eur. Math. Soc. (JEMS), 16 (2014), 67-101. doi: 10.4171/JEMS/428. Google Scholar

[3]

K. BeauchardL. Miller and M. Morancey, 2D Grushin-type equations: Minimal time and null controllable data, J. Differ. Equations, 259 (2015), 5813-5845. doi: 10.1016/j.jde.2015.07.007. Google Scholar

[4]

P. CannarsaP. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19. doi: 10.1137/04062062X. Google Scholar

[5]

P. Cannarsa, P. Martinez and J. Vancostenoble, Global Carleman estimates for degenerate parabolic operators with applications, Mem. Am. Math. Soc., 239 (2016), ix+209 pp. doi: 10.1090/memo/1133. Google Scholar

[6]

P. CannarsaP. Martinez and J. Vancostenoble, The cost of controlling weakly degenerate parabolic equations by boundary controls, Math. Control Relat. Fields, 7 (2017), 171-211. doi: 10.3934/mcrf.2017006. Google Scholar

[7]

P. Cannarsa, P. Martinez and J. Vancostenoble, The cost of controlling strongly degenerate parabolic equations, to appear in ESAIM, Control Optim. Calc. Var..Google Scholar

[8]

J. M. Coron and S. Guerrero, Singular optimal control: A linear 1-D parabolic-hyperbolic example, Asymp. Anal., 44 (2005), 237-257. Google Scholar

[9]

J. Dardé and S. Ervedoza, On the reachable set for the one-dimensional heat equation, SIAM J. Control Optim., 56 (2018), 1692–1715, arXiv: 1609.02692. doi: 10.1137/16M1093215. Google Scholar

[10]

S. Ervedoza and E. Zuazua, Sharp observability estimates for heat equations, Arch. Ration. Mech. Anal., 202 (2011), 975-1017. doi: 10.1007/s00205-011-0445-8. Google Scholar

[11]

W. N. Everitt, A catalogue of Sturm-Liouville differential equations, in Sturm-Liouville Theory, Birkhäuser, (2005), 271–331. doi: 10.1007/3-7643-7359-8_12. Google Scholar

[12]

H. O. Fattorini and D. L. Russel, Exact Controllability Theorems for Linear Parabolic Equations in One Space Dimension, Arch. Rat. Mech. Anal., 43 (1971), 272-292. doi: 10.1007/BF00250466. Google Scholar

[13]

H. O. Fattorini and D. L. Russel, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 32 (1974/75), 45-69. doi: 10.1090/qam/510972. Google Scholar

[14]

H. O. Fattorini, Boundary control of temperature distributions in a parallelepipedon, SIAM J. Control, 13 (1975), 1-13. doi: 10.1137/0313001. Google Scholar

[15]

E. Fernandez-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514. Google Scholar

[16]

A. V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Ser. 34, Seoul National University, Seoul, 1996. Google Scholar

[17]

O. Glass, A complex-analytic approach to the problem of uniform controllability of transport equation in the vanishing viscosity limit, J. Funct. Anal., 258 (2010), 852-868. doi: 10.1016/j.jfa.2009.06.035. Google Scholar

[18]

M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., 52 (2014), 2037-2054. doi: 10.1137/120901374. Google Scholar

[19]

M. Gueye and P. Lissy, Singular optimal control of a 1-D parabolic-hyperbolic degenerate equation, ESAIM Control Optim. Calc. Var., 22 (2016), 1184-1203. doi: 10.1051/cocv/2016036. Google Scholar

[20]

E. N. Güichal, A lower bound of the norm of the control operator for the heat equation, J. Math. Anal. Appl., 110 (1985), 519-527. doi: 10.1016/0022-247X(85)90313-0. Google Scholar

[21]

S. Hansen, Bounds on functions biorthogonal to sets of complex exponentials; control of damped elastic systems, J. Math. Anal. Appl., 158 (1991), 487-508. doi: 10.1016/0022-247X(91)90252-U. Google Scholar

[22]

A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations dune plaque rectangulaire, J. Math. Pures Appl., 68 (1989), 457-465. Google Scholar

[23]

E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen. Band 1: Gewöhnliche Differentialgleichungen, Neunte Auflage. Mit einem Vorwort von Detlef Kamke. B. G. Teubner, Stuttgart, 1977. Google Scholar

[24]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer, Berlin, 2005. Google Scholar

[25]

N. N. Lebedev, Special Functions and Their Applications, Dover Publications, New York, 1972. Google Scholar

[26]

J.-L. Lions and E. Zuazua, On the cost of controlling unstable systems: The case of boundary controls, J. Anal. Math., 73 (1997), 225-249. doi: 10.1007/BF02788145. Google Scholar

[27]

P. Lissy, On the cost of fast controls for some families of dispersive or parabolic equations in one space dimension, SIAM J. Control Optim., 52 (2014), 2651-2676. doi: 10.1137/140951746. Google Scholar

[28]

P. Lissy, Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transport-diffusion equation, J. Differ. Equations, 259 (2015), 5331-5352. doi: 10.1016/j.jde.2015.06.031. Google Scholar

[29]

P. MartinL. Rosier and P. Rouchon, Null controllability of one-dimensional parabolic equations using flatness, Automatica J. IFAC, 50 (2014), 3067-3076. doi: 10.1016/j.automatica.2014.10.049. Google Scholar

[30]

P. MartinL. Rosier and P. Rouchon, On the reachable states for the boundary control of the heat equation, Applied Mathematics Research eXpress, 2016 (2016), 181-216. doi: 10.1093/amrx/abv013. Google Scholar

[31]

L. Miller, Geometric bounds on the growth rate of null controllability cost for the heat equation in small time, J. Differ. Equations, 204 (2004), 202-226. doi: 10.1016/j.jde.2004.05.007. Google Scholar

[32]

R. M. Redheffer, Elementary remarks on completeness, Duke Math. J., 35 (1968), 103-116. doi: 10.1215/S0012-7094-68-03511-4. Google Scholar

[33]

L. Schwartz, Étude des Sommes D'exponentielles, deuxième édition, Hermann, Paris, 1959. Google Scholar

[34]

T. I. Seidman, Time-invariance of the reachable set for linear control problems, J. Math. Anal. Appl., 72 (1979), 17-20. doi: 10.1016/0022-247X(79)90271-3. Google Scholar

[35]

T. I. Seidman, Two results on exact boundary control of parabolic equations, Appl. Math. Optim., 11 (1984), 145-152. doi: 10.1007/BF01442174. Google Scholar

[36]

T. I. SeidmanS. A. Avdonin and S. A. Ivanov, The "window problem" for series of complex exponentials, J. Fourier Anal. Appl., 6 (2000), 233-254. doi: 10.1007/BF02511154. Google Scholar

[37]

G. Tenenbaum and M. Tucsnak, New blow-up rates for fast controls of Schrodinger and heat equations, J. Differ. Equations, 243 (2007), 70-100. doi: 10.1016/j.jde.2007.06.019. Google Scholar

[38]

G. N. Watson, A Treatise on the Theory of Bessel Functions, second edition, Cambridge University Press, Cambridge, 1944. Google Scholar

[39]

R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980. Google Scholar

[1]

Włodzimierz M. Tulczyjew, Paweł Urbański. Regularity of generating families of functions. Journal of Geometric Mechanics, 2010, 2 (2) : 199-221. doi: 10.3934/jgm.2010.2.199

[2]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[3]

Tao Yu. Measurable sensitivity via Furstenberg families. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4543-4563. doi: 10.3934/dcds.2017194

[4]

Vito Mandorino. Connecting orbits for families of Tonelli Hamiltonians. Journal of Modern Dynamics, 2012, 6 (4) : 499-538. doi: 10.3934/jmd.2012.6.499

[5]

Pranay Goel, James Sneyd. Gap junctions and excitation patterns in continuum models of islets. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1969-1990. doi: 10.3934/dcdsb.2012.17.1969

[6]

Fang Zeng, Xiaodong Liu, Jiguang Sun, Liwei Xu. The reciprocity gap method for a cavity in an inhomogeneous medium. Inverse Problems & Imaging, 2016, 10 (3) : 855-868. doi: 10.3934/ipi.2016024

[7]

Peter Monk, Jiguang Sun. Inverse scattering using finite elements and gap reciprocity. Inverse Problems & Imaging, 2007, 1 (4) : 643-660. doi: 10.3934/ipi.2007.1.643

[8]

Bruno Colbois, Alexandre Girouard. The spectral gap of graphs and Steklov eigenvalues on surfaces. Electronic Research Announcements, 2014, 21: 19-27. doi: 10.3934/era.2014.21.19

[9]

Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917

[10]

Lev Buhovski, Roman Muraviev. Growth gap versus smoothness for diffeomorphisms of the interval. Journal of Modern Dynamics, 2008, 2 (4) : 629-643. doi: 10.3934/jmd.2008.2.629

[11]

Regina Sandra Burachik, Alex Rubinov. On the absence of duality gap for Lagrange-type functions. Journal of Industrial & Management Optimization, 2005, 1 (1) : 33-38. doi: 10.3934/jimo.2005.1.33

[12]

Xin Zhang. The gap distribution of directions in some Schottky groups. Journal of Modern Dynamics, 2017, 11: 477-499. doi: 10.3934/jmd.2017019

[13]

Eugen Mihailescu, Mariusz Urbański. Transversal families of hyperbolic skew-products. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 907-928. doi: 10.3934/dcds.2008.21.907

[14]

Carl Bracken, Zhengbang Zha. On the Fourier spectra of the infinite families of quadratic APN functions. Advances in Mathematics of Communications, 2009, 3 (3) : 219-226. doi: 10.3934/amc.2009.3.219

[15]

Kai-Uwe Schmidt, Jonathan Jedwab, Matthew G. Parker. Two binary sequence families with large merit factor. Advances in Mathematics of Communications, 2009, 3 (2) : 135-156. doi: 10.3934/amc.2009.3.135

[16]

Farid Tari. Two-parameter families of implicit differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 139-162. doi: 10.3934/dcds.2005.13.139

[17]

Filippo Gazzola, Mirko Sardella. Attractors for families of processes in weak topologies of Banach spaces. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 455-466. doi: 10.3934/dcds.1998.4.455

[18]

Tomas Persson. Typical points and families of expanding interval mappings. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4019-4034. doi: 10.3934/dcds.2017170

[19]

Fatih Bayazit, Ulrich Groh, Rainer Nagel. Floquet representations and asymptotic behavior of periodic evolution families. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4795-4810. doi: 10.3934/dcds.2013.33.4795

[20]

Farid Tari. Two parameter families of binary differential equations. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 759-789. doi: 10.3934/dcds.2008.22.759

2018 Impact Factor: 0.545

Article outline

[Back to Top]