doi: 10.3934/dcdss.2020077

Existence of quasiperiodic solutions of elliptic equations on the entire space with a quadratic nonlinearity

1. 

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States

2. 

Department of Mathematics and Statistics, McMaster University, Hamilton, ON L8S 4K1, Canada

* Corresponding author: P. Poláčik

Received  September 2017 Revised  April 2018 Published  April 2019

Fund Project: The first author was supported in part by the NSF Grant DMS-1565388. The second author was supported in part by CONICYT-Chile Becas Chile, Convocatoria 2010

We consider the equation
$\Delta u+{{u}_{yy}}+f(x,u) = 0,\quad (x,y)\in {{\mathbb{R}}^{N}}\times \mathbb{R}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 1 \right)$
where
$ f $
is sufficiently regular, radially symmetric in
$ x $
, and
$ f(\cdot,0)\equiv 0 $
. We give sufficient conditions for the existence of solutions of (1) which are quasiperiodic in
$ y $
and decaying as
$ |x|\to\infty $
uniformly in
$ y $
. Such solutions are found using a center manifold reduction and results from the KAM theory. A required nondegeneracy condition is stated in terms of
$ f_u(x,0) $
and
$ f_{uu}(x,0) $
, and is independent of higher-order terms in the Taylor expansion of
$ f(x,\cdot) $
. In particular, our results apply to some quadratic nonlinearities.
Citation: Peter Poláčik, Darío A. Valdebenito. Existence of quasiperiodic solutions of elliptic equations on the entire space with a quadratic nonlinearity. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020077
References:
[1]

S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-body Schrödinger Operators, volume 29 of Mathematical Notes, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. Google Scholar

[2]

D. Bambusi, An introduction to Birkhoff normal form, Università di Milano, 2014.Google Scholar

[3]

H. W. BroerS. N. ChowY. Kim and G. Vegter, A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys., 44 (1993), 389-432. doi: 10.1007/BF00953660. Google Scholar

[4]

H. W. Broer and G. B. Huitema, A proof of the isoenergetic KAM-theorem from the "ordinary" one, Journal of Differential Equations, 90 (1991), 52-60. doi: 10.1016/0022-0396(91)90160-B. Google Scholar

[5]

B. Grébert, Birkhoff normal form and Hamiltonian PDEs, Séminaries and Congrès, 15 (2007), 1–46. Google Scholar

[6]

M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Universitext. Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011. doi: 10.1007/978-0-85729-112-7. Google Scholar

[7]

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, 1994. doi: 10.1007/978-3-0348-8540-9. Google Scholar

[8]

T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995. Google Scholar

[9]

K. Kirchgässner, Wave solutions of reversible systems and applications, Journal of Differential Equations, 45 (1982), 113-127. doi: 10.1016/0022-0396(82)90058-4. Google Scholar

[10]

A. Mielke, Hamiltonian and Lagrangian Flows on Center Manifolds, Lecture Notes in Mathematics, 1489. Springer-Verlag, 1991. doi: 10.1007/BFb0097544. Google Scholar

[11]

P. Poláčik and D. A. Valdebenito, Existence of quasiperiodic solutions of elliptic equations on $\mathbb R^{N+1}$ via center manifold and KAM theorems, Journal of Differential Equations, 262 (2017), 6109-6164. doi: 10.1016/j.jde.2017.02.027. Google Scholar

[12]

J. Pöschel, Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math., 35 (1982), 653-696. doi: 10.1002/cpa.3160350504. Google Scholar

[13] M. Reed and B. Simon, Methods of Mathematical Physics, Volume Ⅳ, Academic Press, New York-London, 1979.
[14]

J. Scheurle, Bifurcation of quasiperiodic solutions from equilibrium points of reversible dynamical systems, Arch. Rational Mech. Anal., 97 (1987), 103-139. doi: 10.1007/BF00251911. Google Scholar

[15]

Y. Shi, J. Xu and X. Xu, On quasi-periodic solutions for generalized Boussinesq equation with quadratic nonlinearity, J. Math. Phys., 56 (2015), 022703, 15pp. doi: 10.1063/1.4906810. Google Scholar

[16]

J. M. Tuwankotta and F. Verhulst, Hamiltonian systems with widely separated frequencies, Nonlinearity, 16 (2003), 689-706. doi: 10.1088/0951-7715/16/2/319. Google Scholar

[17]

C. Valls, Existence of quasi-periodic solutions for elliptic equations on a cylindrical domain, Comentarii Mathematici Helvetici, 81 (2006), 783-800. doi: 10.4171/CMH/73. Google Scholar

[18]

A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, in Dynamics Reported, Springer-Verlag, 1 (1992), 125–163. Google Scholar

show all references

References:
[1]

S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-body Schrödinger Operators, volume 29 of Mathematical Notes, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. Google Scholar

[2]

D. Bambusi, An introduction to Birkhoff normal form, Università di Milano, 2014.Google Scholar

[3]

H. W. BroerS. N. ChowY. Kim and G. Vegter, A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys., 44 (1993), 389-432. doi: 10.1007/BF00953660. Google Scholar

[4]

H. W. Broer and G. B. Huitema, A proof of the isoenergetic KAM-theorem from the "ordinary" one, Journal of Differential Equations, 90 (1991), 52-60. doi: 10.1016/0022-0396(91)90160-B. Google Scholar

[5]

B. Grébert, Birkhoff normal form and Hamiltonian PDEs, Séminaries and Congrès, 15 (2007), 1–46. Google Scholar

[6]

M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Universitext. Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011. doi: 10.1007/978-0-85729-112-7. Google Scholar

[7]

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, 1994. doi: 10.1007/978-3-0348-8540-9. Google Scholar

[8]

T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995. Google Scholar

[9]

K. Kirchgässner, Wave solutions of reversible systems and applications, Journal of Differential Equations, 45 (1982), 113-127. doi: 10.1016/0022-0396(82)90058-4. Google Scholar

[10]

A. Mielke, Hamiltonian and Lagrangian Flows on Center Manifolds, Lecture Notes in Mathematics, 1489. Springer-Verlag, 1991. doi: 10.1007/BFb0097544. Google Scholar

[11]

P. Poláčik and D. A. Valdebenito, Existence of quasiperiodic solutions of elliptic equations on $\mathbb R^{N+1}$ via center manifold and KAM theorems, Journal of Differential Equations, 262 (2017), 6109-6164. doi: 10.1016/j.jde.2017.02.027. Google Scholar

[12]

J. Pöschel, Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math., 35 (1982), 653-696. doi: 10.1002/cpa.3160350504. Google Scholar

[13] M. Reed and B. Simon, Methods of Mathematical Physics, Volume Ⅳ, Academic Press, New York-London, 1979.
[14]

J. Scheurle, Bifurcation of quasiperiodic solutions from equilibrium points of reversible dynamical systems, Arch. Rational Mech. Anal., 97 (1987), 103-139. doi: 10.1007/BF00251911. Google Scholar

[15]

Y. Shi, J. Xu and X. Xu, On quasi-periodic solutions for generalized Boussinesq equation with quadratic nonlinearity, J. Math. Phys., 56 (2015), 022703, 15pp. doi: 10.1063/1.4906810. Google Scholar

[16]

J. M. Tuwankotta and F. Verhulst, Hamiltonian systems with widely separated frequencies, Nonlinearity, 16 (2003), 689-706. doi: 10.1088/0951-7715/16/2/319. Google Scholar

[17]

C. Valls, Existence of quasi-periodic solutions for elliptic equations on a cylindrical domain, Comentarii Mathematici Helvetici, 81 (2006), 783-800. doi: 10.4171/CMH/73. Google Scholar

[18]

A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, in Dynamics Reported, Springer-Verlag, 1 (1992), 125–163. Google Scholar

[1]

Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2141-2160. doi: 10.3934/dcds.2017092

[2]

Shui-Nee Chow, Kening Lu, Yun-Qiu Shen. Normal forms for quasiperiodic evolutionary equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 65-94. doi: 10.3934/dcds.1996.2.65

[3]

Yajing Zhang, Jianghao Hao. Existence of positive entire solutions for semilinear elliptic systems in the whole space. Communications on Pure & Applied Analysis, 2009, 8 (2) : 719-724. doi: 10.3934/cpaa.2009.8.719

[4]

Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707

[5]

Soohyun Bae. Positive entire solutions of inhomogeneous semilinear elliptic equations with supercritical exponent. Conference Publications, 2005, 2005 (Special) : 50-59. doi: 10.3934/proc.2005.2005.50

[6]

Alan V. Lair, Ahmed Mohammed. Entire large solutions of semilinear elliptic equations of mixed type. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1607-1618. doi: 10.3934/cpaa.2009.8.1607

[7]

Luigi Chierchia, Gabriella Pinzari. Planetary Birkhoff normal forms. Journal of Modern Dynamics, 2011, 5 (4) : 623-664. doi: 10.3934/jmd.2011.5.623

[8]

Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561

[9]

Antonio Vitolo. On the growth of positive entire solutions of elliptic PDEs and their gradients. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1335-1346. doi: 10.3934/dcdss.2014.7.1335

[10]

Patrizia Pucci, Marco Rigoli. Entire solutions of singular elliptic inequalities on complete manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 115-137. doi: 10.3934/dcds.2008.20.115

[11]

Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249

[12]

Bin Liu. Quasiperiodic solutions of semilinear Liénard equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 137-160. doi: 10.3934/dcds.2005.12.137

[13]

Emmanuel Hebey, Jérôme Vétois. Multiple solutions for critical elliptic systems in potential form. Communications on Pure & Applied Analysis, 2008, 7 (3) : 715-741. doi: 10.3934/cpaa.2008.7.715

[14]

Yu-Juan Sun, Li Zhang, Wan-Tong Li, Zhi-Cheng Wang. Entire solutions in nonlocal monostable equations: Asymmetric case. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1049-1072. doi: 10.3934/cpaa.2019051

[15]

Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure & Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839

[16]

Alberto Farina. Some symmetry results for entire solutions of an elliptic system arising in phase separation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2505-2511. doi: 10.3934/dcds.2014.34.2505

[17]

M. Matzeu, Raffaella Servadei. A variational approach to a class of quasilinear elliptic equations not in divergence form. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 819-830. doi: 10.3934/dcdss.2012.5.819

[18]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

[19]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[20]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (19)
  • HTML views (234)
  • Cited by (0)

Other articles
by authors

[Back to Top]