doi: 10.3934/dcdss.2020073

Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem

1. 

Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraẞe 8-10, 1040 Vienna, Austria

2. 

Faculty of Mathematics, Technical University of Munich, Boltzmannstraẞe 3, 85748 Garching bei München, Germany

* Corresponding author: Annalisa Iuorio

Received  May 2017 Revised  February 2018 Published  April 2019

Fund Project: The first author is supported by FWF grant W1245

We investigate a singularly perturbed, non-convex variational problem arising in material science with a combination of geometrical and numerical methods. Our starting point is a work by Stefan Müller, where it is proven that the solutions of the variational problem are periodic and exhibit a complicated multi-scale structure. In order to get more insight into the rich solution structure, we transform the corresponding Euler-Lagrange equation into a Hamiltonian system of first order ODEs and then use geometric singular perturbation theory to study its periodic solutions. Based on the geometric analysis we construct an initial periodic orbit to start numerical continuation of periodic orbits with respect to the key parameters. This allows us to observe the influence of the parameters on the behavior of the orbits and to study their interplay in the minimization process. Our results confirm previous analytical results such as the asymptotics of the period of minimizers predicted by Müller. Furthermore, we find several new structures in the entire space of admissible periodic orbits.

Citation: Annalisa Iuorio, Christian Kuehn, Peter Szmolyan. Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020073
References:
[1]

R. Abeyaratne, K. Bhattacharya and J. K. Knowles, Strain-energy functions with multiple local minima: Modeling phase transformations using finite thermoelasticity, in Nonlinear Elasticity: Theory and Applications (London Math. Soc. Lecture Note Ser.), Cambridge Univ. Press, 283 (2001), 433-490. doi: 10.1017/CBO9780511526466.013. Google Scholar

[2] R. Abeyaratne and J. K. Knowles, Evolution of Phase Transitions: A Continuum Theory, Cambridge Univ. Press, Cambridge, 2006. doi: 10.1017/CBO9780511547133. Google Scholar
[3]

J. M. Ball, Mathematical models of martensitic microstructure, Material Science and Engineering: A, 378 (2004), 61-69. doi: 10.1016/j.msea.2003.11.055. Google Scholar

[4]

J. M. Ball and R. D. James, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal., 100 (1987), 13-52. doi: 10.1007/BF00281246. Google Scholar

[5]

K. Bhattacharya, Comparison of the geometrically nonlinear and linear theories of martensitic transformation, Continuum Mechanics and Thermodynamics, 5 (1993), 205-242. doi: 10.1007/BF01126525. Google Scholar

[6] K. Bhattacharya, Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect, volume 2, Oxford Univ. Press, 2003. Google Scholar
[7]

P. Carter and B. Sandstede, Fast pulses with oscillatory tails in the FitzHugh-Nagumo system, SIAM J. Math. Anal., 47 (2015), 3393-3441. doi: 10.1137/140999177. Google Scholar

[8]

A. R. ChampneysV. KirkE. KnoblochB. E. Oldeman and J. Sneyd, When Shil'nikov meets Hopf in excitable systems, SIAM J. Appl. Dyn. Syst., 6 (2007), 663-693. doi: 10.1137/070682654. Google Scholar

[9]

B. Dacorogna, Introduction to the Calculus of Variations, 3rd edition, Imperial College Press, London, 2015. Google Scholar

[10]

M. Desroches, T. J. Kaper and M. Krupa, Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster, Chaos: An Interdisciplinary Journal of Nonlinear Science, 23 (2013), 046106, 13pp. doi: 10.1063/1.4827026. Google Scholar

[11]

M. DesrochesB. Krauskopf and H. M. Osinga, Numerical continuation of canard orbits in slow-fast dynamical systems, Nonlinearity, 23 (2010), 739-765. doi: 10.1088/0951-7715/23/3/017. Google Scholar

[12]

E. Doedel, AUTO: a program for the automatic bifurcation analysis of autonomous systems, in Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing (Vol. Ⅰ (Winnipeg, Man., 1980)), 30 (1981), 265-284. Google Scholar

[13]

G. Dolzmann, Variational Methods for Crystalline Microstructure-analysis and Computation, Lecture Notes in Mathematics, 1803. Springer-Verlag, Berlin, 2003. doi: 10.1007/b10191. Google Scholar

[14]

F. Dumortier and R. Roussarie, Canard cycles and center manifolds, Amer. Math. Soc., 121 (1996), x+100 pp. doi: 10.1090/memo/0577. Google Scholar

[15]

J. L. Ericksen, Equilibrium of bars, J. Elasticity (Special issue dedicated to A.E. Green), 5 (1975), 191-201. doi: 10.1007/BF00126984. Google Scholar

[16]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53-98. doi: 10.1016/0022-0396(79)90152-9. Google Scholar

[17]

R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane, The Bulletin of Mathematical Biophysics, 17 (1955), 257-278. doi: 10.1007/BF02477753. Google Scholar

[18]

V. Gelfreich and L. Lerman, Almost invariant elliptic manifold in a singularly perturbed Hamiltonian system, Nonlinearity, 15 (2002), 447-457. doi: 10.1088/0951-7715/15/2/312. Google Scholar

[19]

A. Giuliani and S. Müller, Striped periodic minimizers of a two-dimensional model for martensitic phase transitions, Comm. Math. Phys., 309 (2012), 312-339. doi: 10.1007/s00220-011-1374-y. Google Scholar

[20]

M. Grinfeld and G. J. Lord, Bifurcations in the regularized Ericksen bar model, Journal of Elasticity, 90 (2008), 161-173. doi: 10.1007/s10659-007-9137-x. Google Scholar

[21]

J. Guckenheimer and C. Kuehn, Computing slow manifolds of saddle type, SIAM J. Appl. Dyn. Syst., 8 (2009), 854-879. doi: 10.1137/080741999. Google Scholar

[22]

J. Guckenheimer and C. Kuehn, Homoclinic orbits of the FitzHugh-Nagumo equation: The singular limit, DCDS-S, 2 (2009), 851-872. doi: 10.3934/dcdss.2009.2.851. Google Scholar

[23]

J. Guckenheimer and C. Kuehn, Homoclinic orbits of the FitzHugh-Nagumo equation: Bifurcations in the full system, SIAM J. Appl. Dyn. Syst., 9 (2010), 138-153. doi: 10.1137/090758404. Google Scholar

[24]

J. Guckenheimer and D. LaMar, Periodic orbit continuation in multiple time scale systems, in Understanding Complex Systems: Numerical continuation methods for dynamical systems, Springer, (2007), 253-267. doi: 10.1007/978-1-4020-6356-5_8. Google Scholar

[25]

J. Guckenheimer and P. Meerkamp, Bifurcation analysis of singular Hopf bifurcation in $\mathbb{R}^3$, SIAM J. Appl. Dyn. Syst., 11 (2012), 1325-1359. doi: 10.1137/11083678X. Google Scholar

[26]

T. J. Healey and H. Kielhöfer, Global continuation via higher-gradient regularization and singular limits in forced one-dimensional phase transitions, SIAM J. Math. Anal., 31 (2000), 1307-1331. doi: 10.1137/S0036141098340065. Google Scholar

[27]

T. J. Healey and U. Miller, Two-phase equilibria in the anti-plane shear of an elastic solid with interfacial effects via global bifurcation, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 463 (2007), 1117-1134. doi: 10.1098/rspa.2006.1807. Google Scholar

[28]

C. K. R. T. Jones, Geometric singular perturbation theory, in Dynamical Systems, Springer, Berlin, Heidelberg, 1609 (1995), 44-118. doi: 10.1007/BFb0095239. Google Scholar

[29]

C. K. R. T. Jones, N. Kopell and R. Langer, Construction of the FitzHugh-Nagumo pulse using differential forms, Patterns and Dynamics in Reactive Media (Minneapolis, MN, 1989), IMA Vol. Math. Appl., 37, Springer, New York, 1991,101-115. doi: 10.1007/978-1-4612-3206-3_7. Google Scholar

[30]

A. G. Khachaturyan, Theory of structural transformations in solids, Courier Corporation, 2013.Google Scholar

[31]

A. G. Khachaturyan and G. Shatalov, Theory of macroscopic periodicity for a phase transition in the solid state, Soviet Phys. JETP, 29 (1969), 557-561. Google Scholar

[32]

R. V. Kohn and S. Müller, Surface energy and microstructure in coherent phase transitions, Comm. Pure Appl. Math., 47 (1994), 405-435. doi: 10.1002/cpa.3160470402. Google Scholar

[33]

I. Kosiuk and P. Szmolyan, Scaling in singular perturbation problems: Blowing-up a relaxation oscillator, SIAM J. Appl. Dyn. Syst., 10 (2011), 1307-1343. doi: 10.1137/100814470. Google Scholar

[34]

K. U. Kristiansen, Computation of saddle-type slow manifolds using iterative methods, SIAM J. Appl. Dyn. Syst., 14 (2015), 1189-1227. doi: 10.1137/140961948. Google Scholar

[35]

M. KrupaB. Sandstede and P. Szmolyan, Fast and slow waves in the FitzHugh-Nagumo equation, J. Differential Equat., 133 (1997), 49-97. doi: 10.1006/jdeq.1996.3198. Google Scholar

[36]

C. Kuehn, Multiple Time Scale Dynamics, Vol. 191, Springer, Berlin, 2015. doi: 10.1007/978-3-319-12316-5. Google Scholar

[37]

C. Kuehn and P. Szmolyan, Multiscale geometry of the Olsen model and non-classical relaxation oscillations, J. Nonlinear Sci., 25 (2015), 583-629. doi: 10.1007/s00332-015-9235-z. Google Scholar

[38]

S. Müller, Singular perturbations as a selection criterion for periodic minimizing sequences, Calc. Var. Partial Differential Equations, 1 (1993), 169-204. doi: 10.1007/BF01191616. Google Scholar

[39]

S. Müller, Variational models for microstructure and phase transitions, in Calculus of Variations and Geometric Evolution Problems, Springer, Berlin, Heidelberg, 1713 (1999), 85-210. doi: 10.1007/BFb0092670. Google Scholar

[40]

J. NagumoS. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proceedings of the IRE, 50 (1962), 2061-2070. doi: 10.1109/JRPROC.1962.288235. Google Scholar

[41]

P. Pedregal, Variational Methods in Nonlinear Elasticity, SIAM, Philadelphia, 2000. doi: 10.1137/1.9780898719529. Google Scholar

[42]

M. Pitteri and G. Zanzotto, Continuum Models for Phase Transitions and Twinning in Crystals, Chapman & Hall/CRC, Boca Raton, Florida, 2003. Google Scholar

[43]

A. L. Roytburd, Martensitic transformation as a typical phase transformation in solids, Solid state physics, 33 (1978), 317-390. doi: 10.1016/S0081-1947(08)60471-3. Google Scholar

[44]

C. Soto-Trevino, A geometric method for periodic orbits in singularly-perturbed systems, in Multiple-time-scale Dynamical Systems, Springer, New York, 22 (2001), 141-202. doi: 10.1007/978-1-4613-0117-2_6. Google Scholar

[45]

L. Truskinovsky and G. Zanzotto, Finite-scale microstructures and metastability in one-dimensional elasticity, Meccanica, 30 (1995), 577-589. doi: 10.1007/BF01557086. Google Scholar

[46]

L. Truskinovsky and G. Zanzotto, EricksenaAZs bar revisited: Energy wiggles, Journal of the Mechanics and Physics of Solids, 44 (1996), 1371-1408. doi: 10.1016/0022-5096(96)00020-8. Google Scholar

[47]

K. T. Tsaneva-AtanasovaH. M. OsingaT. Riess and A. Sherman, Full system bifurcation analysis of endocrine bursting models, J. Theor. Biol., 264 (2010), 1133-1146. doi: 10.1016/j.jtbi.2010.03.030. Google Scholar

[48]

A. VainchteinT. HealeyP. Rosakis and L. Truskinovsky, The role of the spinodal region in one-dimensional martensitic phase transitions, Phys. D, 115 (1998), 29-48. doi: 10.1016/S0167-2789(97)00224-8. Google Scholar

[49]

N. K. Yip, Structure of stable solutions of a one-dimensional variational problem, ESAIM Control Optim. Calc. Var., 12 (2006), 721-751. doi: 10.1051/cocv:2006019. Google Scholar

show all references

References:
[1]

R. Abeyaratne, K. Bhattacharya and J. K. Knowles, Strain-energy functions with multiple local minima: Modeling phase transformations using finite thermoelasticity, in Nonlinear Elasticity: Theory and Applications (London Math. Soc. Lecture Note Ser.), Cambridge Univ. Press, 283 (2001), 433-490. doi: 10.1017/CBO9780511526466.013. Google Scholar

[2] R. Abeyaratne and J. K. Knowles, Evolution of Phase Transitions: A Continuum Theory, Cambridge Univ. Press, Cambridge, 2006. doi: 10.1017/CBO9780511547133. Google Scholar
[3]

J. M. Ball, Mathematical models of martensitic microstructure, Material Science and Engineering: A, 378 (2004), 61-69. doi: 10.1016/j.msea.2003.11.055. Google Scholar

[4]

J. M. Ball and R. D. James, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal., 100 (1987), 13-52. doi: 10.1007/BF00281246. Google Scholar

[5]

K. Bhattacharya, Comparison of the geometrically nonlinear and linear theories of martensitic transformation, Continuum Mechanics and Thermodynamics, 5 (1993), 205-242. doi: 10.1007/BF01126525. Google Scholar

[6] K. Bhattacharya, Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect, volume 2, Oxford Univ. Press, 2003. Google Scholar
[7]

P. Carter and B. Sandstede, Fast pulses with oscillatory tails in the FitzHugh-Nagumo system, SIAM J. Math. Anal., 47 (2015), 3393-3441. doi: 10.1137/140999177. Google Scholar

[8]

A. R. ChampneysV. KirkE. KnoblochB. E. Oldeman and J. Sneyd, When Shil'nikov meets Hopf in excitable systems, SIAM J. Appl. Dyn. Syst., 6 (2007), 663-693. doi: 10.1137/070682654. Google Scholar

[9]

B. Dacorogna, Introduction to the Calculus of Variations, 3rd edition, Imperial College Press, London, 2015. Google Scholar

[10]

M. Desroches, T. J. Kaper and M. Krupa, Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster, Chaos: An Interdisciplinary Journal of Nonlinear Science, 23 (2013), 046106, 13pp. doi: 10.1063/1.4827026. Google Scholar

[11]

M. DesrochesB. Krauskopf and H. M. Osinga, Numerical continuation of canard orbits in slow-fast dynamical systems, Nonlinearity, 23 (2010), 739-765. doi: 10.1088/0951-7715/23/3/017. Google Scholar

[12]

E. Doedel, AUTO: a program for the automatic bifurcation analysis of autonomous systems, in Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing (Vol. Ⅰ (Winnipeg, Man., 1980)), 30 (1981), 265-284. Google Scholar

[13]

G. Dolzmann, Variational Methods for Crystalline Microstructure-analysis and Computation, Lecture Notes in Mathematics, 1803. Springer-Verlag, Berlin, 2003. doi: 10.1007/b10191. Google Scholar

[14]

F. Dumortier and R. Roussarie, Canard cycles and center manifolds, Amer. Math. Soc., 121 (1996), x+100 pp. doi: 10.1090/memo/0577. Google Scholar

[15]

J. L. Ericksen, Equilibrium of bars, J. Elasticity (Special issue dedicated to A.E. Green), 5 (1975), 191-201. doi: 10.1007/BF00126984. Google Scholar

[16]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53-98. doi: 10.1016/0022-0396(79)90152-9. Google Scholar

[17]

R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane, The Bulletin of Mathematical Biophysics, 17 (1955), 257-278. doi: 10.1007/BF02477753. Google Scholar

[18]

V. Gelfreich and L. Lerman, Almost invariant elliptic manifold in a singularly perturbed Hamiltonian system, Nonlinearity, 15 (2002), 447-457. doi: 10.1088/0951-7715/15/2/312. Google Scholar

[19]

A. Giuliani and S. Müller, Striped periodic minimizers of a two-dimensional model for martensitic phase transitions, Comm. Math. Phys., 309 (2012), 312-339. doi: 10.1007/s00220-011-1374-y. Google Scholar

[20]

M. Grinfeld and G. J. Lord, Bifurcations in the regularized Ericksen bar model, Journal of Elasticity, 90 (2008), 161-173. doi: 10.1007/s10659-007-9137-x. Google Scholar

[21]

J. Guckenheimer and C. Kuehn, Computing slow manifolds of saddle type, SIAM J. Appl. Dyn. Syst., 8 (2009), 854-879. doi: 10.1137/080741999. Google Scholar

[22]

J. Guckenheimer and C. Kuehn, Homoclinic orbits of the FitzHugh-Nagumo equation: The singular limit, DCDS-S, 2 (2009), 851-872. doi: 10.3934/dcdss.2009.2.851. Google Scholar

[23]

J. Guckenheimer and C. Kuehn, Homoclinic orbits of the FitzHugh-Nagumo equation: Bifurcations in the full system, SIAM J. Appl. Dyn. Syst., 9 (2010), 138-153. doi: 10.1137/090758404. Google Scholar

[24]

J. Guckenheimer and D. LaMar, Periodic orbit continuation in multiple time scale systems, in Understanding Complex Systems: Numerical continuation methods for dynamical systems, Springer, (2007), 253-267. doi: 10.1007/978-1-4020-6356-5_8. Google Scholar

[25]

J. Guckenheimer and P. Meerkamp, Bifurcation analysis of singular Hopf bifurcation in $\mathbb{R}^3$, SIAM J. Appl. Dyn. Syst., 11 (2012), 1325-1359. doi: 10.1137/11083678X. Google Scholar

[26]

T. J. Healey and H. Kielhöfer, Global continuation via higher-gradient regularization and singular limits in forced one-dimensional phase transitions, SIAM J. Math. Anal., 31 (2000), 1307-1331. doi: 10.1137/S0036141098340065. Google Scholar

[27]

T. J. Healey and U. Miller, Two-phase equilibria in the anti-plane shear of an elastic solid with interfacial effects via global bifurcation, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 463 (2007), 1117-1134. doi: 10.1098/rspa.2006.1807. Google Scholar

[28]

C. K. R. T. Jones, Geometric singular perturbation theory, in Dynamical Systems, Springer, Berlin, Heidelberg, 1609 (1995), 44-118. doi: 10.1007/BFb0095239. Google Scholar

[29]

C. K. R. T. Jones, N. Kopell and R. Langer, Construction of the FitzHugh-Nagumo pulse using differential forms, Patterns and Dynamics in Reactive Media (Minneapolis, MN, 1989), IMA Vol. Math. Appl., 37, Springer, New York, 1991,101-115. doi: 10.1007/978-1-4612-3206-3_7. Google Scholar

[30]

A. G. Khachaturyan, Theory of structural transformations in solids, Courier Corporation, 2013.Google Scholar

[31]

A. G. Khachaturyan and G. Shatalov, Theory of macroscopic periodicity for a phase transition in the solid state, Soviet Phys. JETP, 29 (1969), 557-561. Google Scholar

[32]

R. V. Kohn and S. Müller, Surface energy and microstructure in coherent phase transitions, Comm. Pure Appl. Math., 47 (1994), 405-435. doi: 10.1002/cpa.3160470402. Google Scholar

[33]

I. Kosiuk and P. Szmolyan, Scaling in singular perturbation problems: Blowing-up a relaxation oscillator, SIAM J. Appl. Dyn. Syst., 10 (2011), 1307-1343. doi: 10.1137/100814470. Google Scholar

[34]

K. U. Kristiansen, Computation of saddle-type slow manifolds using iterative methods, SIAM J. Appl. Dyn. Syst., 14 (2015), 1189-1227. doi: 10.1137/140961948. Google Scholar

[35]

M. KrupaB. Sandstede and P. Szmolyan, Fast and slow waves in the FitzHugh-Nagumo equation, J. Differential Equat., 133 (1997), 49-97. doi: 10.1006/jdeq.1996.3198. Google Scholar

[36]

C. Kuehn, Multiple Time Scale Dynamics, Vol. 191, Springer, Berlin, 2015. doi: 10.1007/978-3-319-12316-5. Google Scholar

[37]

C. Kuehn and P. Szmolyan, Multiscale geometry of the Olsen model and non-classical relaxation oscillations, J. Nonlinear Sci., 25 (2015), 583-629. doi: 10.1007/s00332-015-9235-z. Google Scholar

[38]

S. Müller, Singular perturbations as a selection criterion for periodic minimizing sequences, Calc. Var. Partial Differential Equations, 1 (1993), 169-204. doi: 10.1007/BF01191616. Google Scholar

[39]

S. Müller, Variational models for microstructure and phase transitions, in Calculus of Variations and Geometric Evolution Problems, Springer, Berlin, Heidelberg, 1713 (1999), 85-210. doi: 10.1007/BFb0092670. Google Scholar

[40]

J. NagumoS. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proceedings of the IRE, 50 (1962), 2061-2070. doi: 10.1109/JRPROC.1962.288235. Google Scholar

[41]

P. Pedregal, Variational Methods in Nonlinear Elasticity, SIAM, Philadelphia, 2000. doi: 10.1137/1.9780898719529. Google Scholar

[42]

M. Pitteri and G. Zanzotto, Continuum Models for Phase Transitions and Twinning in Crystals, Chapman & Hall/CRC, Boca Raton, Florida, 2003. Google Scholar

[43]

A. L. Roytburd, Martensitic transformation as a typical phase transformation in solids, Solid state physics, 33 (1978), 317-390. doi: 10.1016/S0081-1947(08)60471-3. Google Scholar

[44]

C. Soto-Trevino, A geometric method for periodic orbits in singularly-perturbed systems, in Multiple-time-scale Dynamical Systems, Springer, New York, 22 (2001), 141-202. doi: 10.1007/978-1-4613-0117-2_6. Google Scholar

[45]

L. Truskinovsky and G. Zanzotto, Finite-scale microstructures and metastability in one-dimensional elasticity, Meccanica, 30 (1995), 577-589. doi: 10.1007/BF01557086. Google Scholar

[46]

L. Truskinovsky and G. Zanzotto, EricksenaAZs bar revisited: Energy wiggles, Journal of the Mechanics and Physics of Solids, 44 (1996), 1371-1408. doi: 10.1016/0022-5096(96)00020-8. Google Scholar

[47]

K. T. Tsaneva-AtanasovaH. M. OsingaT. Riess and A. Sherman, Full system bifurcation analysis of endocrine bursting models, J. Theor. Biol., 264 (2010), 1133-1146. doi: 10.1016/j.jtbi.2010.03.030. Google Scholar

[48]

A. VainchteinT. HealeyP. Rosakis and L. Truskinovsky, The role of the spinodal region in one-dimensional martensitic phase transitions, Phys. D, 115 (1998), 29-48. doi: 10.1016/S0167-2789(97)00224-8. Google Scholar

[49]

N. K. Yip, Structure of stable solutions of a one-dimensional variational problem, ESAIM Control Optim. Calc. Var., 12 (2006), 721-751. doi: 10.1051/cocv:2006019. Google Scholar

Figure 1.  Schematic representation of simple laminates microstructures as periodic solutions with $X \in [0,1]$. (a) Microstructures in one space dimension: austenite (A) and martensite (M) alternate, while the transition area is shown in gray. (b) Structure in space of the variable $u_X$, whose values $\pm 1$ represent the two different phases of the material of width of order $\mathcal{O}(\varepsilon^\alpha)$, with $\alpha = 1/3$ for minimizers (as shown in [38]) and $\alpha = 0$ for other critical points. The width of the transition interval is of order $\mathcal{O}(\varepsilon)$.
Figure 2.  Critical manifold ${\mathcal C}_0$ in $(w,u,v)$-space. The magenta dashed lines are the fold lines ${\mathcal L}_\pm$. The blue solid curves correspond to $\mathcal{C}_{0,l}^\mu$ and $\mathcal{C}_{0,r}^\mu$, i.e., the intersection of $\mathcal{C}_{0,l}$ and $\mathcal{C}_{0,r}$ and the hypersurface $H(u,v,w,z) = \mu$ for $\mu = 0$.
Figure 3.  $\mathcal{C}_{0,l}^\mu$ and $\mathcal{C}_{0,r}^\mu$ in $(w,u)$-space with $\mu = 0$; cf. Figure 2.
Figure 4.  Fast flow in the $(w,z)$-space for 20. Equilibria are marked with blue dots and the stable and unstable manifold trajectories in green. The heteroclinic fast connections are indicated with double arrows.
Figure 5.  Singular periodic orbit $\gamma_0^\mu$ for a fixed value of $\mu$ ($\mu = 0$), obtained by composition of slow (blue) and fast (green) pieces. (a) Orbit in $(w,z,u)$-space. (b) Orbit in the $(w,u,v)$-space. The fast pieces are indicated via dashed lines to illustrate the fact we are here considering their projection in $(w,u,v)$, while they actually occur in the $(w,z)$-plane. Consequently, they do not intersect ${\mathcal C}_{0,m}$.
Figure 6.  Transversal intersection in the $(w,z,v)$ space between $W_u({\mathcal C}_{0,l})$ (in orange) and $W_s({\mathcal C}_{0,r})$ (in magenta). The blue line represents the critical manifold ${\mathcal C}_0$.
Figure 7.  Schematic representation of the SMST algorithm applied to $ \mathcal{C}_{0, l}^\mu $ (an analogous situation occurs for $ \mathcal{C}_{0, r}^\mu $). The critical manifold is indicated by a dotted blue line, while the red line represents the slow manifold for $ \varepsilon = 0.001 $. The orange point corresponds to $ (0, w_L, 0) $, which actually belongs to both manifolds
Figure 8.  Continuation in $\mu$: (a) bifurcation diagram in $(\mu, P)$-space, where two periodic solutions corresponding to $\mu = -0.124$ are marked by crosses; (b) corresponding solutions in $\left(w,z,u \right)$-space: the one on the lower branch (magenta) is almost purely fast, while the one on the upper branch (purple) contains long non-vanishing slow pieces.
Figure 9.  Continuation in $\mu$. (a) Zoom on the upper part of the bifurcation diagram in-$(\mu,P)$ space, where two periodic orbits corresponding to $\mu = 0.0025$ are marked by crosses. (a1)-(a2) The orbits are shown in $\left(w,z,u\right)$-space. The periodic orbit on the bottom part of the upper branch (purple) corresponds to analytical expectations with two fast and two slow segments. The periodic orbit on the top part of the upper branch (magenta) includes two new fast "homoclinic excursions". (b) Zoom on the lower part of the bifurcation diagram in $(\mu, P)$-space, where three solutions are marked. (b1) The solutions in phase space all correspond to periodic orbits around the center equilibrium $p_0$; note that the scale in the $u$-coordinate is extremely small so the three periodic orbits almost lie in the hyperplane $\{u = 0\}$.
Figure 10.  Continuation in $\varepsilon$: on the left side bifurcation diagrams in $(\varepsilon, P)$ are shown, on the right the corresponding solutions in $\left( w, z, u \right)$-space are displayed. (a) $\mu = \mu_l$, (b) $\mu = \mu_c$, (c) $\mu = \mu_r$.
Figure 11.  Illustration of two-parameter continuation. (a) Three different bifurcation diagrams have been computed, each starting from a solution at $\mu = 0$ for three different values of $\varepsilon = 0.1,0.01,10^{-5}$ (red, green, blue). It is already visible and confirmed by the computation that the sequence of leftmost fold points on each branch converges to $\mu = -1/8$ as $\varepsilon\rightarrow 0$. However, the period scaling law of the orbits precisely at these fold points, which is shown in (b) as three dots corresponding to the three folds in (a) and a suitable interpolation (black line), does not converge as $\mathcal{O}(\varepsilon^{1/3})$ (grey reference line with slope $\frac13$).
Figure 12.  Possible fits of the form $P \simeq \varepsilon^{\alpha}$ for the numerical data computed with $\mu = \mu_l$ (black line): $\alpha = 2$, blue; $\alpha = 1/3$, green; $\alpha = 1$, red.
Figure 13.  Parabola-shaped diagram obtained by fixing $\varepsilon = 0.001$ and numerically computing the value of the functional $\mathcal{I}^{\varepsilon}$ along the solutions computed via continuation in $\texttt{AUTO}$. The plot presents a minimum, and the value of $P$ corresponding to $\varepsilon$ where this minimum is realized is recorded in order to check the period law 3.
Figure 14.  Comparison between the values of $P$ minimizing $\mathcal{I}^{\varepsilon}$ for several discrete values in the range $I_{\varepsilon}$ (red circles) and the period law 3 (black line). (a) Zoom on the range $\left[ 10^{-7}, 10^{-2} \right]$, where it is expected that large values of $\varepsilon$ tend to deviate from the $\mathcal{O}(\varepsilon^{1/3})$ leading-order scaling, while for low values the scaling the scaling agrees. (b) The same plot as in (a) on a log-log scale.
[1]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[2]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[3]

Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli. On the validity of the Euler-Lagrange system. Communications on Pure & Applied Analysis, 2015, 14 (1) : 51-62. doi: 10.3934/cpaa.2015.14.51

[4]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[5]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[6]

Mohammad Hassan Farshbaf-Shaker, Takeshi Fukao, Noriaki Yamazaki. Singular limit of Allen--Cahn equation with constraint and its Lagrange multiplier. Conference Publications, 2015, 2015 (special) : 418-427. doi: 10.3934/proc.2015.0418

[7]

Terence Tao. On the universality of the incompressible Euler equation on compact manifolds. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1553-1565. doi: 10.3934/dcds.2018064

[8]

J. B. van den Berg, J. D. Mireles James. Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4637-4664. doi: 10.3934/dcds.2016002

[9]

Renato Huzak. Cyclicity of the origin in slow-fast codimension 3 saddle and elliptic bifurcations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 171-215. doi: 10.3934/dcds.2016.36.171

[10]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[11]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[12]

Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

[13]

Regina Sandra Burachik, Alex Rubinov. On the absence of duality gap for Lagrange-type functions. Journal of Industrial & Management Optimization, 2005, 1 (1) : 33-38. doi: 10.3934/jimo.2005.1.33

[14]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[15]

Timothy Blass, Rafael de la Llave. Perturbation and numerical methods for computing the minimal average energy. Networks & Heterogeneous Media, 2011, 6 (2) : 241-255. doi: 10.3934/nhm.2011.6.241

[16]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[17]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[18]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[19]

Alexandre Caboussat, Allison Leonard. Numerical solution and fast-slow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123-132. doi: 10.3934/proc.2009.2009.123

[20]

Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (23)
  • HTML views (382)
  • Cited by (0)

[Back to Top]