doi: 10.3934/dcdss.2020065

Forward omega limit sets of nonautonomous dynamical systems

School of Mathematics and Statistics, and, Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan 430074, China

Dedicated to Professor Jürgen Scheurle on his 65th birthday

Received  September 2017 Revised  May 2018 Published  April 2019

Fund Project: HC was partially funded by China Postdoctoral Science Foundation 2017M612430. PEK and MY were partially supported by the Chinese NSF grant 11571125

The forward $ \omega $-limit set $ \omega_{\mathcal{B}} $ of a nonautonomous dynamical system $ \varphi $ with a positively invariant absorbing family $ \mathcal{B} $ $ = $ $ \{ B(t), t \in \mathbb{R}\} $ of closed and bounded subsets of a Banach space $ X $ which is asymptotically compact is shown to be asymptotically positive invariant in general and asymptotic negative invariant if $ \varphi $ is also strongly asymptotically compact and eventually continuous in its initial value uniformly on bounded time sets independently of the initial time. In addition, a necessary and sufficient condition for a $ \varphi $-invariant family $ \mathcal{A} $ $ = $ $ \left\{A(t), t \in \mathbb{R}\right\} $ in $ \mathcal{B} $ of nonempty compact subsets of $ X $ to be a forward attractor is generalised to this context.

Citation: Hongyong Cui, Peter E. Kloeden, Meihua Yang. Forward omega limit sets of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020065
References:
[1]

M. BortolanA. N. Carvalho and J. A. Langa, Structure of attractors for skew product semiflows, J. Differential Equations, 257 (2014), 490-522. doi: 10.1016/j.jde.2014.04.008. Google Scholar

[2]

T. CaraballoJ. A. LangaV. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems, Set-Valued Anal, 11 (2003), 153-201. doi: 10.1023/A:1022902802385. Google Scholar

[3]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors of infinite dimensional nonautonomous dynamical systems, Springer, New York, 2013.Google Scholar

[4]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, Non-autonomous dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 703-747. doi: 10.3934/dcdsb.2015.20.703. Google Scholar

[5]

H. Cui and P. E. Kloeden, Forward random attractors of non-autonomous random dynamical systems, J. Differential Equations, 265 (2018), 6166-6186. Google Scholar

[6]

H. Cui and P. E. Kloeden, Tail convergences of pullback attractors for asymptotically converging multi-valued dynamical systems, (in press).Google Scholar

[7]

H. Cui and J. A. Langa, Uniform attractors for non-autonommous random dynamical systems, J. Differential Equations, 263 (2017), 1225-1268. doi: 10.1016/j.jde.2017.03.018. Google Scholar

[8]

P. E. Kloeden, Asymptotic invariance and limit sets of general control systems, J. Differential Equations, 19 (1975), 91-105. doi: 10.1016/0022-0396(75)90021-2. Google Scholar

[9]

P. E. Kloeden, Asymptotic invariance and the discretisation of nonautonomous forward attracting sets, J. Comput. Dynamics, 3 (2016), 179-189. doi: 10.3934/jcd.2016009. Google Scholar

[10]

P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Mat. Soc., 144 (2016), 259-268. doi: 10.1090/proc/12735. Google Scholar

[11]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Amer. Math. Soc., Providence, 2011. doi: 10.1090/surv/176. Google Scholar

[12]

P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations, J. Difference Eqns. Applns., 22 (2016), 513-525. doi: 10.1080/10236198.2015.1107550. Google Scholar

[13]

V. Lakshmikantham and S. Leela, Asymptotic self-invariant sets and conditional stability, in Proc. Inter. Symp. Diff. Equations and Dynamical Systems, Puerto Rico 1965, Academic Press, New York, 1967, 363-373. Google Scholar

[14]

J. P. Lasalle, The Stability of Dynamical Systems, SIAM-CBMS, Philadelphia, 1976. Google Scholar

[15] M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations., Cambridge University Press, Cambridge, 1992.

show all references

References:
[1]

M. BortolanA. N. Carvalho and J. A. Langa, Structure of attractors for skew product semiflows, J. Differential Equations, 257 (2014), 490-522. doi: 10.1016/j.jde.2014.04.008. Google Scholar

[2]

T. CaraballoJ. A. LangaV. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems, Set-Valued Anal, 11 (2003), 153-201. doi: 10.1023/A:1022902802385. Google Scholar

[3]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors of infinite dimensional nonautonomous dynamical systems, Springer, New York, 2013.Google Scholar

[4]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, Non-autonomous dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 703-747. doi: 10.3934/dcdsb.2015.20.703. Google Scholar

[5]

H. Cui and P. E. Kloeden, Forward random attractors of non-autonomous random dynamical systems, J. Differential Equations, 265 (2018), 6166-6186. Google Scholar

[6]

H. Cui and P. E. Kloeden, Tail convergences of pullback attractors for asymptotically converging multi-valued dynamical systems, (in press).Google Scholar

[7]

H. Cui and J. A. Langa, Uniform attractors for non-autonommous random dynamical systems, J. Differential Equations, 263 (2017), 1225-1268. doi: 10.1016/j.jde.2017.03.018. Google Scholar

[8]

P. E. Kloeden, Asymptotic invariance and limit sets of general control systems, J. Differential Equations, 19 (1975), 91-105. doi: 10.1016/0022-0396(75)90021-2. Google Scholar

[9]

P. E. Kloeden, Asymptotic invariance and the discretisation of nonautonomous forward attracting sets, J. Comput. Dynamics, 3 (2016), 179-189. doi: 10.3934/jcd.2016009. Google Scholar

[10]

P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Mat. Soc., 144 (2016), 259-268. doi: 10.1090/proc/12735. Google Scholar

[11]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Amer. Math. Soc., Providence, 2011. doi: 10.1090/surv/176. Google Scholar

[12]

P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations, J. Difference Eqns. Applns., 22 (2016), 513-525. doi: 10.1080/10236198.2015.1107550. Google Scholar

[13]

V. Lakshmikantham and S. Leela, Asymptotic self-invariant sets and conditional stability, in Proc. Inter. Symp. Diff. Equations and Dynamical Systems, Puerto Rico 1965, Academic Press, New York, 1967, 363-373. Google Scholar

[14]

J. P. Lasalle, The Stability of Dynamical Systems, SIAM-CBMS, Philadelphia, 1976. Google Scholar

[15] M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations., Cambridge University Press, Cambridge, 1992.
[1]

Peter E. Kloeden. Asymptotic invariance and the discretisation of nonautonomous forward attracting sets. Journal of Computational Dynamics, 2016, 3 (2) : 179-189. doi: 10.3934/jcd.2016009

[2]

Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1535-1557. doi: 10.3934/dcdsb.2018058

[3]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[4]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[5]

Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169

[6]

Regina S. Burachik, Xiaoqi Yang. Asymptotic strong duality. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 539-548. doi: 10.3934/naco.2011.1.539

[7]

Adriano Da Silva, Christoph Kawan. Invariance entropy of hyperbolic control sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 97-136. doi: 10.3934/dcds.2016.36.97

[8]

Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3653-3666. doi: 10.3934/dcdsb.2018309

[9]

Changjing Zhuge, Xiaojuan Sun, Jinzhi Lei. On positive solutions and the Omega limit set for a class of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2487-2503. doi: 10.3934/dcdsb.2013.18.2487

[10]

Christian Licht, Thibaut Weller. Approximation of semi-groups in the sense of Trotter and asymptotic mathematical modeling in physics of continuous media. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1709-1741. doi: 10.3934/dcdss.2019114

[11]

Mikhail Krastanov, Michael Malisoff, Peter Wolenski. On the strong invariance property for non-Lipschitz dynamics. Communications on Pure & Applied Analysis, 2006, 5 (1) : 107-124. doi: 10.3934/cpaa.2006.5.107

[12]

Christian Lax, Sebastian Walcher. A note on global asymptotic stability of nonautonomous master equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2143-2149. doi: 10.3934/dcdsb.2013.18.2143

[13]

María Anguiano, P.E. Kloeden. Asymptotic behaviour of the nonautonomous SIR equations with diffusion. Communications on Pure & Applied Analysis, 2014, 13 (1) : 157-173. doi: 10.3934/cpaa.2014.13.157

[14]

Aicha Balhag, Zaki Chbani, Hassan Riahi. Existence and continuous-discrete asymptotic behaviour for Tikhonov-like dynamical equilibrium systems. Evolution Equations & Control Theory, 2018, 7 (3) : 373-401. doi: 10.3934/eect.2018019

[15]

Michel Chipot, Karen Yeressian. On the asymptotic behavior of variational inequalities set in cylinders. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4875-4890. doi: 10.3934/dcds.2013.33.4875

[16]

Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671

[17]

David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499

[18]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[19]

Tomás Caraballo, Francisco Morillas, José Valero. Asymptotic behaviour of a logistic lattice system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4019-4037. doi: 10.3934/dcds.2014.34.4019

[20]

Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (16)
  • HTML views (241)
  • Cited by (0)

Other articles
by authors

[Back to Top]