doi: 10.3934/dcdss.2020047

Dynamical behaviour of fractional-order predator-prey system of Holling-type

1. 

Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa

2. 

Department of Mathematical Sciences, Federal University of Technology, PMB 704, Akure, Ondo State, Nigeria

* Corresponding author: mkowolax@yahoo.com (K. M. Owolabi)

Received  April 2018 Revised  May 2018 Published  March 2019

Fund Project: The research contained in this report is supported by South African National Research Foundation

In this paper, the local derivative in time is replaced with the Caputo-Fabrizio fractional derivative of order $ \alpha\in(0, 1) $. A two-step fractional version of the Adams-Bashforth method is formulated for the approximation of this derivative. To enhance the correct choice of parameters when numerically simulating the full-system, we examine the stability analysis of the main equation. Two important examples are drawn to explore the dynamic richness of the predator-prey model with Holling type. Simulation results at different instances of $ \alpha $ is in agreement with the theoretical findings.

Citation: Kolade M. Owolabi. Dynamical behaviour of fractional-order predator-prey system of Holling-type. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020047
References:
[1]

H. I. Abdel-Gawad and K. M. Saad, On the behaviour of solutions of the two-cell cubic autocatalator, ANZIAM, 44 (2002), E1–E32. doi: 10.1017/S1446181100007859.

[2]

P. AgarwalA. Berdyshev and E. Karimov, Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative, Results in Mathematics, 17 (2017), 1235-1257. doi: 10.1007/s00025-016-0620-1.

[3]

P. Agarwal and A. A. El-Sayed, Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation, Physica A: Statistical Mechanics and its Applications, 500 (2018), 40-49. doi: 10.1016/j.physa.2018.02.014.

[4]

P. AgarwalS. Jain and T. Mansour, Further extended Caputo fractional derivative operator and its applications, Russian Journal of Mathematical Physics, 24 (2017), 415-425. doi: 10.1134/S106192081704001X.

[5]

A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation, Journal of Computational Physics, 293 (2015), 104-114. doi: 10.1016/j.jcp.2014.12.043.

[6]

A. Atangana, On the new fractional derivative and application to Fisher's reaction-diffusion, Applied Mathematics and Computation, 273 (2016), 948-956. doi: 10.1016/j.amc.2015.10.021.

[7]

A. Atangana and B. S. T. Alkahtani, New model of groundwater owing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016), 1-6.

[8]

A. Atangana and R. T. Alqahtani, Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation, Advances in Difference Equations, 2016 (2016), Paper No. 156, 13 pp. doi: 10.1186/s13662-016-0871-x.

[9]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769. doi: 10.2298/TSCI160111018A.

[10]

A. Atangana and K. M. Owolabi, New numerical approach for fractional differential equations, Mathematical Modelling of Natural Phenomena, 13 (2018), Art. 3, 21 pp, https://doi.org/10.1051/mmnp/2018010 doi: 10.1051/mmnp/2018010.

[11]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 73-85.

[12]

M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progress in Fractional Differentiation and Applications, 2 (2016), 1-11. doi: 10.18576/pfda/020101.

[13]

J. F. Gómez-Aguilar, H. Yépez-Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. F. Escobar-Jiménez and V. H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Advances in Difference Equations, 2017 (2017), Paper No. 68, 18 pp. doi: 10.1186/s13662-017-1120-7.

[14]

J. F. Gómez-Aguilar, Analytical and numerical solutions of the telegraph equation using the Atangana-Caputo fractional order derivative, Journal of Electromagnetic Waves and Applications, 32 (2018), 695-712.

[15]

J. F. Gómez-Aguilar, Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations, Physica A: Statistical Mechanics and its Applications, 494 (2018), 52-75. doi: 10.1016/j.physa.2017.12.007.

[16]

J. F. Gómez-AguilarR. F. Escobar-JiménezM. G. López-López and V. M. Alvarado-Martínez, Analysis of projectile motion: A comparative study using fractional operators with power law, exponential decay and Mittag-Leffler kernel, The European Physical Journal Plus, 133 (2018), 1-14.

[17]

J. Huang and D. Xiao, Analyses of bifurcations and stability in a predator-prey system with Holling type-Ⅳ functional response, Acta Mathematicae Applicatae Sinica, English Series, 20 (2004), 167-178. doi: 10.1007/s10255-004-0159-x.

[18]

V. F. Morales-Delgado, J. F. Gómez-Aguilar, H. Yépez-Martínez, D. Baleanu, R. F. Escobar-Jimenez and V. H. Olivares-Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Advances in Difference Equations, 2016 (2016), Paper No. 164, 17 pp. doi: 10.1186/s13662-016-0891-6.

[19]

K. M. Owolabi, Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems, Chaos, Solitons and Fractals, 93 (2016), 89-98. doi: 10.1016/j.chaos.2016.10.005.

[20]

K. M. Owolabi, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Communications in Nonlinear Science and Numerical Simulation, 44 (2017), 304-317. doi: 10.1016/j.cnsns.2016.08.021.

[21]

K. M. Owolabi and A. Atangana, Analysis of mathematics and numerical pattern formation in superdiffusive fractional multicomponent system, Advances in Applied Mathematics and Mechanics, 9 (2017), 1438-1460. doi: 10.4208/aamm.OA-2016-0115.

[22]

K. M. Owolabi and A. Atangana, Numerical simulation of noninteger order system in subdiffusive, diffusive, and superdiffusive scenarios, Journal of Computational and Nonlinear Dynamics, 12 (2017), 031010-1, 7pages.

[23]

K. M. Owolabi and A. Atangana, Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction-diffusion systems, Computational and Applied Mathematics, 37 (2018), 2166-2189. doi: 10.1007/s40314-017-0445-x.

[24]

K. M. Owolabi, Mathematical modelling and analysis of two-component system with Caputo fractional derivative order, Chaos, Solitons and Fractals, 103 (2017), 544-554. doi: 10.1016/j.chaos.2017.07.013.

[25]

K. M. Owolabi and A. Atangana, Numerical approximation of nonlinear fractional parabolic differential equations with Caputo-Fabrizio derivative in Riemann-Liouville sense, Chaos, Solitons and Fractals, 99 (2017), 171-179. doi: 10.1016/j.chaos.2017.04.008.

[26]

K. M. Owolabi and A. Atangana, Analysis and application of new fractional Adams-Bashforth scheme with Caputo-Fabrizio derivative, Chaos, Solitons and Fractals, 105 (2017), 111-119. doi: 10.1016/j.chaos.2017.10.020.

[27]

K. M. Owolabi, Mathematical analysis and numerical simulation of chaotic noninteger order Differential systems with Riemann-Liouville derivative, Numerical Methods for Partial Differential Equations, 34 (2018), 274-295. doi: 10.1002/num.22197.

[28]

K. M. Owolabi, Riemann-Liouville fractional derivative and application to model chaotic differential equations, Progress in Fractional Differentiation and Applications, 4 (2018), 99-110. doi: 10.18576/pfda/040204.

[29]

K. M. Owolabi, Numerical approach to fractional blow-up equations with Atangana-Baleanu derivative in Riemann-Liouville sense, Mathematical Modelling of Natural Phenomena, 13 (2018), Art. 7, 17 pp. doi: 10.1051/mmnp/2018006.

[30]

K. M. Owolabi, Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator, The European Physical Journal Plus, 133 (2018), 98. doi: 10.1140/epjp/i2018-11951-x.

[31]

K. M. Owolabi and A. Atangana, Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations, Chaos, Solitons and Fractals, 111 (2018), 119-127. doi: 10.1016/j.chaos.2018.04.019.

[32]

K. M. Owolabi, Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative, The European physical Journal Plus, 133 (2018), 15. doi: 10.1140/epjp/i2018-11863-9.

[33]

E. Pindza and K. M. Owolabi, Fourier spectral method for higher order space fractional reaction-diffusion equations, Communications in Nonlinear Science and Numerical Simulation, 40 (2016), 112-128. doi: 10.1016/j.cnsns.2016.04.020.

[34]

M. V. Ruzhansky, Y. J. Cho, P. Agarwal and I. Area, Advances in Real and Complex Analysis with Applications, Birkhuser, 2017.

[35]

K. M. Saad, An approximate analytical solution of coupled nonlinear fractional diffusion equations, Journal of Fractional Calculus and Applications, 5 (2014), 58-72.

[36]

K. M. Saad, Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional cubic isothermal auto-catalytic chemical system, The European Physical Journal Plus, 133 (2018), 94. doi: 10.1140/epjp/i2018-11947-6.

[37]

X. J. Yang, Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems, Thermal Science, 21 (2017), 1161-1171. doi: 10.2298/TSCI161216326Y.

[38]

X. J. YangF. Gao and H. M. Srivastava, A new computational approach for solving nonlinear local fractional PDEs, Journal of Computational and Applied Mathematics, 339 (2018), 285-296. doi: 10.1016/j.cam.2017.10.007.

[39]

H. Yépez-MartínezJ. F. Gómez-AguilarI. O. SosaJ. M. Reyes and J. Torres-Jiménez, The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation, Revista Mexicana de Física, 62 (2016), 310-316.

show all references

References:
[1]

H. I. Abdel-Gawad and K. M. Saad, On the behaviour of solutions of the two-cell cubic autocatalator, ANZIAM, 44 (2002), E1–E32. doi: 10.1017/S1446181100007859.

[2]

P. AgarwalA. Berdyshev and E. Karimov, Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative, Results in Mathematics, 17 (2017), 1235-1257. doi: 10.1007/s00025-016-0620-1.

[3]

P. Agarwal and A. A. El-Sayed, Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation, Physica A: Statistical Mechanics and its Applications, 500 (2018), 40-49. doi: 10.1016/j.physa.2018.02.014.

[4]

P. AgarwalS. Jain and T. Mansour, Further extended Caputo fractional derivative operator and its applications, Russian Journal of Mathematical Physics, 24 (2017), 415-425. doi: 10.1134/S106192081704001X.

[5]

A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation, Journal of Computational Physics, 293 (2015), 104-114. doi: 10.1016/j.jcp.2014.12.043.

[6]

A. Atangana, On the new fractional derivative and application to Fisher's reaction-diffusion, Applied Mathematics and Computation, 273 (2016), 948-956. doi: 10.1016/j.amc.2015.10.021.

[7]

A. Atangana and B. S. T. Alkahtani, New model of groundwater owing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016), 1-6.

[8]

A. Atangana and R. T. Alqahtani, Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation, Advances in Difference Equations, 2016 (2016), Paper No. 156, 13 pp. doi: 10.1186/s13662-016-0871-x.

[9]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769. doi: 10.2298/TSCI160111018A.

[10]

A. Atangana and K. M. Owolabi, New numerical approach for fractional differential equations, Mathematical Modelling of Natural Phenomena, 13 (2018), Art. 3, 21 pp, https://doi.org/10.1051/mmnp/2018010 doi: 10.1051/mmnp/2018010.

[11]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 73-85.

[12]

M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progress in Fractional Differentiation and Applications, 2 (2016), 1-11. doi: 10.18576/pfda/020101.

[13]

J. F. Gómez-Aguilar, H. Yépez-Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. F. Escobar-Jiménez and V. H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Advances in Difference Equations, 2017 (2017), Paper No. 68, 18 pp. doi: 10.1186/s13662-017-1120-7.

[14]

J. F. Gómez-Aguilar, Analytical and numerical solutions of the telegraph equation using the Atangana-Caputo fractional order derivative, Journal of Electromagnetic Waves and Applications, 32 (2018), 695-712.

[15]

J. F. Gómez-Aguilar, Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations, Physica A: Statistical Mechanics and its Applications, 494 (2018), 52-75. doi: 10.1016/j.physa.2017.12.007.

[16]

J. F. Gómez-AguilarR. F. Escobar-JiménezM. G. López-López and V. M. Alvarado-Martínez, Analysis of projectile motion: A comparative study using fractional operators with power law, exponential decay and Mittag-Leffler kernel, The European Physical Journal Plus, 133 (2018), 1-14.

[17]

J. Huang and D. Xiao, Analyses of bifurcations and stability in a predator-prey system with Holling type-Ⅳ functional response, Acta Mathematicae Applicatae Sinica, English Series, 20 (2004), 167-178. doi: 10.1007/s10255-004-0159-x.

[18]

V. F. Morales-Delgado, J. F. Gómez-Aguilar, H. Yépez-Martínez, D. Baleanu, R. F. Escobar-Jimenez and V. H. Olivares-Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Advances in Difference Equations, 2016 (2016), Paper No. 164, 17 pp. doi: 10.1186/s13662-016-0891-6.

[19]

K. M. Owolabi, Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems, Chaos, Solitons and Fractals, 93 (2016), 89-98. doi: 10.1016/j.chaos.2016.10.005.

[20]

K. M. Owolabi, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Communications in Nonlinear Science and Numerical Simulation, 44 (2017), 304-317. doi: 10.1016/j.cnsns.2016.08.021.

[21]

K. M. Owolabi and A. Atangana, Analysis of mathematics and numerical pattern formation in superdiffusive fractional multicomponent system, Advances in Applied Mathematics and Mechanics, 9 (2017), 1438-1460. doi: 10.4208/aamm.OA-2016-0115.

[22]

K. M. Owolabi and A. Atangana, Numerical simulation of noninteger order system in subdiffusive, diffusive, and superdiffusive scenarios, Journal of Computational and Nonlinear Dynamics, 12 (2017), 031010-1, 7pages.

[23]

K. M. Owolabi and A. Atangana, Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction-diffusion systems, Computational and Applied Mathematics, 37 (2018), 2166-2189. doi: 10.1007/s40314-017-0445-x.

[24]

K. M. Owolabi, Mathematical modelling and analysis of two-component system with Caputo fractional derivative order, Chaos, Solitons and Fractals, 103 (2017), 544-554. doi: 10.1016/j.chaos.2017.07.013.

[25]

K. M. Owolabi and A. Atangana, Numerical approximation of nonlinear fractional parabolic differential equations with Caputo-Fabrizio derivative in Riemann-Liouville sense, Chaos, Solitons and Fractals, 99 (2017), 171-179. doi: 10.1016/j.chaos.2017.04.008.

[26]

K. M. Owolabi and A. Atangana, Analysis and application of new fractional Adams-Bashforth scheme with Caputo-Fabrizio derivative, Chaos, Solitons and Fractals, 105 (2017), 111-119. doi: 10.1016/j.chaos.2017.10.020.

[27]

K. M. Owolabi, Mathematical analysis and numerical simulation of chaotic noninteger order Differential systems with Riemann-Liouville derivative, Numerical Methods for Partial Differential Equations, 34 (2018), 274-295. doi: 10.1002/num.22197.

[28]

K. M. Owolabi, Riemann-Liouville fractional derivative and application to model chaotic differential equations, Progress in Fractional Differentiation and Applications, 4 (2018), 99-110. doi: 10.18576/pfda/040204.

[29]

K. M. Owolabi, Numerical approach to fractional blow-up equations with Atangana-Baleanu derivative in Riemann-Liouville sense, Mathematical Modelling of Natural Phenomena, 13 (2018), Art. 7, 17 pp. doi: 10.1051/mmnp/2018006.

[30]

K. M. Owolabi, Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator, The European Physical Journal Plus, 133 (2018), 98. doi: 10.1140/epjp/i2018-11951-x.

[31]

K. M. Owolabi and A. Atangana, Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations, Chaos, Solitons and Fractals, 111 (2018), 119-127. doi: 10.1016/j.chaos.2018.04.019.

[32]

K. M. Owolabi, Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative, The European physical Journal Plus, 133 (2018), 15. doi: 10.1140/epjp/i2018-11863-9.

[33]

E. Pindza and K. M. Owolabi, Fourier spectral method for higher order space fractional reaction-diffusion equations, Communications in Nonlinear Science and Numerical Simulation, 40 (2016), 112-128. doi: 10.1016/j.cnsns.2016.04.020.

[34]

M. V. Ruzhansky, Y. J. Cho, P. Agarwal and I. Area, Advances in Real and Complex Analysis with Applications, Birkhuser, 2017.

[35]

K. M. Saad, An approximate analytical solution of coupled nonlinear fractional diffusion equations, Journal of Fractional Calculus and Applications, 5 (2014), 58-72.

[36]

K. M. Saad, Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional cubic isothermal auto-catalytic chemical system, The European Physical Journal Plus, 133 (2018), 94. doi: 10.1140/epjp/i2018-11947-6.

[37]

X. J. Yang, Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems, Thermal Science, 21 (2017), 1161-1171. doi: 10.2298/TSCI161216326Y.

[38]

X. J. YangF. Gao and H. M. Srivastava, A new computational approach for solving nonlinear local fractional PDEs, Journal of Computational and Applied Mathematics, 339 (2018), 285-296. doi: 10.1016/j.cam.2017.10.007.

[39]

H. Yépez-MartínezJ. F. Gómez-AguilarI. O. SosaJ. M. Reyes and J. Torres-Jiménez, The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation, Revista Mexicana de Física, 62 (2016), 310-316.

Figure 1.  Dynamic behaviour of fractional system (16) with $ \alpha = 0.50 $. Other parameters are as fixed in (17)
Figure 2.  Dynamic behaviour of fractional system (16) with α = 0:79. Other parameters are as fixed in (17).
Figure 3.  Dynamic behaviour of fractional system (16) with $ \alpha = 0.91 $. Other parameters are as fixed in (17)
Figure 4.  A strange attractor for dynamic system (16) with $ \alpha = 0.48 $
Figure 5.  One-dimensional distribution of time-fractional reaction-diffusion system (19) for $ \alpha = 0.11 $
Figure 6.  One-dimensional distribution of time-fractional reaction-diffusion system (18) for α = 0:25
Figure 7.  One-dimensional distribution of time-fractional reaction-diffusion system (18) for α = 0:45
Figure 8.  One-dimensional distribution of time-fractional reaction-diffusion system (18) for α = 0:79
Figure 9.  One-dimensional distribution of time-fractional reaction-diffusion system (18) for α = 0:91
[1]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 975-993. doi: 10.3934/dcdss.2020057

[2]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[3]

Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203

[4]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure & Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[5]

Guanqi Liu, Yuwen Wang. Stochastic spatiotemporal diffusive predator-prey systems. Communications on Pure & Applied Analysis, 2018, 17 (1) : 67-84. doi: 10.3934/cpaa.2018005

[6]

Zhifu Xie. Turing instability in a coupled predator-prey model with different Holling type functional responses. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1621-1628. doi: 10.3934/dcdss.2011.4.1621

[7]

Leonid Braverman, Elena Braverman. Stability analysis and bifurcations in a diffusive predator-prey system. Conference Publications, 2009, 2009 (Special) : 92-100. doi: 10.3934/proc.2009.2009.92

[8]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[9]

Ronald E. Mickens. Analysis of a new class of predator-prey model. Conference Publications, 2001, 2001 (Special) : 265-269. doi: 10.3934/proc.2001.2001.265

[10]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[11]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[12]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[13]

Safia Slimani, Paul Raynaud de Fitte, Islam Boussaada. Dynamics of a prey-predator system with modified Leslie-Gower and Holling type Ⅱ schemes incorporating a prey refuge. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-37. doi: 10.3934/dcdsb.2019042

[14]

Nguyen Huu Du, Nguyen Hai Dang. Asymptotic behavior of Kolmogorov systems with predator-prey type in random environment. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2693-2712. doi: 10.3934/cpaa.2014.13.2693

[15]

Verónica Anaya, Mostafa Bendahmane, Mauricio Sepúlveda. Mathematical and numerical analysis for Predator-prey system in a polluted environment. Networks & Heterogeneous Media, 2010, 5 (4) : 813-847. doi: 10.3934/nhm.2010.5.813

[16]

Sílvia Cuadrado. Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences & Engineering, 2009, 6 (4) : 701-718. doi: 10.3934/mbe.2009.6.701

[17]

Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173

[18]

Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823

[19]

Antoni Leon Dawidowicz, Anna Poskrobko. Stability problem for the age-dependent predator-prey model. Evolution Equations & Control Theory, 2018, 7 (1) : 79-93. doi: 10.3934/eect.2018005

[20]

Wei Feng, Jody Hinson. Stability and pattern in two-patch predator-prey population dynamics. Conference Publications, 2005, 2005 (Special) : 268-279. doi: 10.3934/proc.2005.2005.268

2017 Impact Factor: 0.561

Article outline

Figures and Tables

[Back to Top]