doi: 10.3934/dcdss.2020045

Note on a $ k $-generalised fractional derivative

1. 

The IIS University, Jaipur, Rajasthan-302020, India

2. 

Manipal University Jaipur, Rajasthan-303007, India

Corresponding author: ekta.jaipur@gmail.com; sunil.joshi@jaipur.manipal.edu

Received  May 2018 Revised  August 2018 Published  March 2019

In this paper, we introduce the $ k $-generalised fractional derivatives with three parameters which reduced to $ k $-fractional Hilfer derivatives and $ k $-Riemann-Liouville fractional derivative as an interesting special cases. Further, we have also introduced some presumably new fascinating results which include the image power function, Laplace transform and composition of $ k $-Riemann-Liouville fractional integral with generalized composite fractional derivative. The technique developed in this paper can be used in other situation as well.

Citation: Ekta Mittal, Sunil Joshi. Note on a $ k $-generalised fractional derivative. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020045
References:
[1]

R. Dıaz and E. Pariguan, On hypergeometric functions and pochhammer k-symbol, Divulg. Mat, 15 (2007), 179-192. Google Scholar

[2]

G. A. Dorrego and R. A. Cerutti, The k-fractional hilfer derivative, International Journal of Mathematical Analysis, 7 (2013), 543-550. doi: 10.12988/ijma.2013.13051. Google Scholar

[3]

R. GarraR. GorenfloF. Polito and Ž Tomovski, Hilfer–prabhakar derivatives and some applications, Applied Mathematics and Computation, 242 (2014), 576-589. doi: 10.1016/j.amc.2014.05.129. Google Scholar

[4]

R. Hilfer et al., Applications of Fractional Calculus in Physics, vol. 35, World Scientific, 2000. doi: 10.1142/9789812817747. Google Scholar

[5]

O. S. Iyiola, Solving k-fractional hilfer differential equations via combined fractional integral transform methods, British Journal of Mathematics & Computer Science, 4 (2014), 1427-1436. doi: 10.9734/BJMCS/2014/9444. Google Scholar

[6]

C. G. Kokologiannaki, Properties and inequalities of generalized k-gamma, beta and zeta functions, Int. J. Contemp. Math. Sciences, 5 (2010), 653-660. Google Scholar

[7]

M. Mansour, Determining the k-generalized gamma function $\gamma$k (x) by functional equations, Int. J. Contemp. Math. Sciences, 4 (2009), 1037-1042. Google Scholar

[8]

K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993. Google Scholar

[9]

G. MridulaP. ManoharL. Chanchalani and A. Subhash, On generalized composite fractional derivative, Walailak Journal of Science and Technology (WJST), 11 (2014), 1069-1076. Google Scholar

[10]

S. Mubeen and G. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci, 7 (2012), 89-94. Google Scholar

[11]

S. MubeenA. Rehman and F. Shaheen, Properties of k-gamma, k-beta and k-psi functions, Bothalia Journal, 5 (2014), 371-379. Google Scholar

[12]

L. G. RomeroL. L. LuqueG. A. Dorrego and R. A. Cerutti, On the k-riemann-liouville fractional derivative, Int. J. Contemp. Math. Sci, 8 (2013), 41-51. doi: 10.12988/ijcms.2013.13004. Google Scholar

show all references

References:
[1]

R. Dıaz and E. Pariguan, On hypergeometric functions and pochhammer k-symbol, Divulg. Mat, 15 (2007), 179-192. Google Scholar

[2]

G. A. Dorrego and R. A. Cerutti, The k-fractional hilfer derivative, International Journal of Mathematical Analysis, 7 (2013), 543-550. doi: 10.12988/ijma.2013.13051. Google Scholar

[3]

R. GarraR. GorenfloF. Polito and Ž Tomovski, Hilfer–prabhakar derivatives and some applications, Applied Mathematics and Computation, 242 (2014), 576-589. doi: 10.1016/j.amc.2014.05.129. Google Scholar

[4]

R. Hilfer et al., Applications of Fractional Calculus in Physics, vol. 35, World Scientific, 2000. doi: 10.1142/9789812817747. Google Scholar

[5]

O. S. Iyiola, Solving k-fractional hilfer differential equations via combined fractional integral transform methods, British Journal of Mathematics & Computer Science, 4 (2014), 1427-1436. doi: 10.9734/BJMCS/2014/9444. Google Scholar

[6]

C. G. Kokologiannaki, Properties and inequalities of generalized k-gamma, beta and zeta functions, Int. J. Contemp. Math. Sciences, 5 (2010), 653-660. Google Scholar

[7]

M. Mansour, Determining the k-generalized gamma function $\gamma$k (x) by functional equations, Int. J. Contemp. Math. Sciences, 4 (2009), 1037-1042. Google Scholar

[8]

K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993. Google Scholar

[9]

G. MridulaP. ManoharL. Chanchalani and A. Subhash, On generalized composite fractional derivative, Walailak Journal of Science and Technology (WJST), 11 (2014), 1069-1076. Google Scholar

[10]

S. Mubeen and G. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci, 7 (2012), 89-94. Google Scholar

[11]

S. MubeenA. Rehman and F. Shaheen, Properties of k-gamma, k-beta and k-psi functions, Bothalia Journal, 5 (2014), 371-379. Google Scholar

[12]

L. G. RomeroL. L. LuqueG. A. Dorrego and R. A. Cerutti, On the k-riemann-liouville fractional derivative, Int. J. Contemp. Math. Sci, 8 (2013), 41-51. doi: 10.12988/ijcms.2013.13004. Google Scholar

[1]

Haisheng Tan, Liuyan Liu, Hongyu Liang. Total $\{k\}$-domination in special graphs. Mathematical Foundations of Computing, 2018, 1 (3) : 255-263. doi: 10.3934/mfc.2018011

[2]

Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $ L_K $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086

[3]

Adam Kanigowski, Federico Rodriguez Hertz, Kurt Vinhage. On the non-equivalence of the Bernoulli and $ K$ properties in dimension four. Journal of Modern Dynamics, 2018, 13: 221-250. doi: 10.3934/jmd.2018019

[4]

Yong Xia, Ruey-Lin Sheu, Shu-Cherng Fang, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅱ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1307-1328. doi: 10.3934/jimo.2016074

[5]

Shu-Cherng Fang, David Y. Gao, Gang-Xuan Lin, Ruey-Lin Sheu, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅰ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1291-1305. doi: 10.3934/jimo.2016073

[6]

Sugata Gangopadhyay, Goutam Paul, Nishant Sinha, Pantelimon Stǎnicǎ. Generalized nonlinearity of $ S$-boxes. Advances in Mathematics of Communications, 2018, 12 (1) : 115-122. doi: 10.3934/amc.2018007

[7]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

[8]

Pak Tung Ho. Prescribing the $ Q' $-curvature in three dimension. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2285-2294. doi: 10.3934/dcds.2019096

[9]

Eun-Kyung Cho, Cunsheng Ding, Jong Yoon Hyun. A spectral characterisation of $ t $-designs and its applications. Advances in Mathematics of Communications, 2019, 13 (3) : 477-503. doi: 10.3934/amc.2019030

[10]

Gang Wang, Yuan Zhang. $ Z $-eigenvalue exclusion theorems for tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2019039

[11]

Caili Sang, Zhen Chen. $ E $-eigenvalue localization sets for tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019042

[12]

Annalisa Cesaroni, Serena Dipierro, Matteo Novaga, Enrico Valdinoci. Minimizers of the $ p $-oscillation functional. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-15. doi: 10.3934/dcds.2019231

[13]

Zalman Balanov, Yakov Krasnov. On good deformations of $ A_m $-singularities. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1851-1866. doi: 10.3934/dcdss.2019122

[14]

Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009

[15]

Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062

[16]

Daniel Heinlein, Michael Kiermaier, Sascha Kurz, Alfred Wassermann. A subspace code of size $ \bf{333} $ in the setting of a binary $ \bf{q} $-analog of the Fano plane. Advances in Mathematics of Communications, 2019, 13 (3) : 457-475. doi: 10.3934/amc.2019029

[17]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-19. doi: 10.3934/dcds.2019228

[18]

Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091

[19]

Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001

[20]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (12)
  • HTML views (285)
  • Cited by (0)

Other articles
by authors

[Back to Top]