doi: 10.3934/dcdss.2020040

Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative

1. 

Department of Mathematics, Faculty of Arts and Sciences, Çankaya University, 06790, Ankara, Turkey

2. 

Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641020, India

3. 

Department of Mathematics, University of Malakand, Dir(L), Khyber Pakhtunkhwa, Pakistan

* Corresponding author: Fahd Jarad

Received  May 2018 Published  March 2019

In this paper, the existence, uniqueness and stability of random implicit fractional differential equations (RIFDs) with nonlocal condition and impulsive effect involving a generalized Hilfer fractional derivative (HFD) are discussed. The arguments are discussed via Krasnoselskii's fixed point theorems, Schaefer's fixed point theorems, Banach contraction principle and Ulam type stability. Some examples are included to ensure the abstract results.

Citation: Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020040
References:
[1]

M. I. Abbas, Ulam stability of fractional impulsive differential equations with Riemann-Liouville integral boundary conditions, J. Contemp. Mathemat. Anal., 50 (2015), 209-219. doi: 10.3103/s1068362315050015. Google Scholar

[2]

T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J of Inequal. Appl., 2017 (2017), Paper No. 130, 11 pp. doi: 10.1186/s13660-017-1400-5. Google Scholar

[3]

T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), Paper No. 313, 11 pp. doi: 10.1186/s13662-017-1285-0. Google Scholar

[4]

T. Abdeljawad and Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall's inequality, J. Comp. Appl. Math., 339 (2018), 218-230. doi: 10.1016/j.cam.2017.10.021. Google Scholar

[5]

T. Abdeljawad and D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phy., 80 (2017), 11-27. doi: 10.1016/S0034-4877(17)30059-9. Google Scholar

[6]

T. Abdeljawad and D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Adv. Differ. Equ., 2016 (2016), Paper No. 232, 18 pp. doi: 10.1186/s13662-016-0949-5. Google Scholar

[7]

A. Atangana and D. Baleanu, New fractional derivative with non-local and non-singular kernel, Thermal Sci., 20 (2016), 757-763. doi: 10.3233/FI-2017-1484. Google Scholar

[8]

A. Bashir and S. Sivasundaram, Some existence results for fractional integro-differential equations with nonlocal conditions, Commun. Appl. Anal., 12 (2008), 107-112. Google Scholar

[9]

M. Benchohra and S. Bouriah, Existence and stability results for nonlinear boundary value problem for implicit differential equations of fractional order, Moroccan J. Pure and Appl. Anal., 1 (2015), 22-37. doi: 10.7603/s40956-015-0002-9. Google Scholar

[10]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernal, Progr. Fract. Differ. Appl., 1 (2015), 73-85. Google Scholar

[11]

K. M. FuratiM. D. Kassim and N. E. Tatar, Existence and uniqueness for a problem involving hilfer fractional derivative, Compur. Math. Appl., 64 (2012), 1616-1626. doi: 10.1016/j.camwa.2012.01.009. Google Scholar

[12]

A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21593-8. Google Scholar

[13]

R. Hilfer, Application Of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747. Google Scholar

[14]

R. W. Ibrahim, Generalized Ulam-Hyers stability for fractional differential equations, Int. J. Math., 23 (2012), 1250056, 9 pp. doi: 10.1142/S0129167X12500565. Google Scholar

[15]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: Mathematics Studies, vol.204, Elsevier, 2006. Google Scholar

[16]

V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World scientific, Singapore, 1989. doi: 10.1142/0906. Google Scholar

[17]

V. Lupulescuand and S. K. Ntouyas, Random fractional differential equations, International Electronic Journal of Pure and Applied Mathematics, 4 (2012), 119-136. Google Scholar

[18]

I. Podlubny, Fractional Differential Equations: Mathematics in Science and Engineering, vol. 198, Acad. Press, 1999. Google Scholar

[19]

A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World scientific, Singapore, 1995. doi: 10.1142/9789812798664. Google Scholar

[20] T. T. Soong, Random Differential Equations in Science and Engineering, Academic Press, New York, 1973.
[21]

J. Vanterler daC. Sousa and E. Capelas de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72-91. doi: 10.1016/j.cnsns.2018.01.005. Google Scholar

[22]

J. Vanterler daC. Sousa and E. Capelas de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018), 50-56. doi: 10.1016/j.aml.2018.01.016. Google Scholar

[23]

H. Vu, Random fractional functional differential equations, Int. J. Nonlinear Anal. and Appl., 7 (2016), 253-267. Google Scholar

[24]

J. WangL. Lv and Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 63 (2011), 1-10. doi: 10.14232/ejqtde.2011.1.63. Google Scholar

[25]

Y. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comp., 266 (2015), 850-859. doi: 10.1016/j.amc.2015.05.144. Google Scholar

[26]

J. WangY. Zhou and M. Fe$\ddot{c}$kanc, Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comp. Math. Appl., 64 (2012), 3389-3405. doi: 10.1016/j.camwa.2012.02.021. Google Scholar

[27]

H. YeJ. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081. doi: 10.1016/j.jmaa.2006.05.061. Google Scholar

show all references

References:
[1]

M. I. Abbas, Ulam stability of fractional impulsive differential equations with Riemann-Liouville integral boundary conditions, J. Contemp. Mathemat. Anal., 50 (2015), 209-219. doi: 10.3103/s1068362315050015. Google Scholar

[2]

T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J of Inequal. Appl., 2017 (2017), Paper No. 130, 11 pp. doi: 10.1186/s13660-017-1400-5. Google Scholar

[3]

T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), Paper No. 313, 11 pp. doi: 10.1186/s13662-017-1285-0. Google Scholar

[4]

T. Abdeljawad and Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall's inequality, J. Comp. Appl. Math., 339 (2018), 218-230. doi: 10.1016/j.cam.2017.10.021. Google Scholar

[5]

T. Abdeljawad and D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phy., 80 (2017), 11-27. doi: 10.1016/S0034-4877(17)30059-9. Google Scholar

[6]

T. Abdeljawad and D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Adv. Differ. Equ., 2016 (2016), Paper No. 232, 18 pp. doi: 10.1186/s13662-016-0949-5. Google Scholar

[7]

A. Atangana and D. Baleanu, New fractional derivative with non-local and non-singular kernel, Thermal Sci., 20 (2016), 757-763. doi: 10.3233/FI-2017-1484. Google Scholar

[8]

A. Bashir and S. Sivasundaram, Some existence results for fractional integro-differential equations with nonlocal conditions, Commun. Appl. Anal., 12 (2008), 107-112. Google Scholar

[9]

M. Benchohra and S. Bouriah, Existence and stability results for nonlinear boundary value problem for implicit differential equations of fractional order, Moroccan J. Pure and Appl. Anal., 1 (2015), 22-37. doi: 10.7603/s40956-015-0002-9. Google Scholar

[10]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernal, Progr. Fract. Differ. Appl., 1 (2015), 73-85. Google Scholar

[11]

K. M. FuratiM. D. Kassim and N. E. Tatar, Existence and uniqueness for a problem involving hilfer fractional derivative, Compur. Math. Appl., 64 (2012), 1616-1626. doi: 10.1016/j.camwa.2012.01.009. Google Scholar

[12]

A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21593-8. Google Scholar

[13]

R. Hilfer, Application Of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747. Google Scholar

[14]

R. W. Ibrahim, Generalized Ulam-Hyers stability for fractional differential equations, Int. J. Math., 23 (2012), 1250056, 9 pp. doi: 10.1142/S0129167X12500565. Google Scholar

[15]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: Mathematics Studies, vol.204, Elsevier, 2006. Google Scholar

[16]

V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World scientific, Singapore, 1989. doi: 10.1142/0906. Google Scholar

[17]

V. Lupulescuand and S. K. Ntouyas, Random fractional differential equations, International Electronic Journal of Pure and Applied Mathematics, 4 (2012), 119-136. Google Scholar

[18]

I. Podlubny, Fractional Differential Equations: Mathematics in Science and Engineering, vol. 198, Acad. Press, 1999. Google Scholar

[19]

A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World scientific, Singapore, 1995. doi: 10.1142/9789812798664. Google Scholar

[20] T. T. Soong, Random Differential Equations in Science and Engineering, Academic Press, New York, 1973.
[21]

J. Vanterler daC. Sousa and E. Capelas de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72-91. doi: 10.1016/j.cnsns.2018.01.005. Google Scholar

[22]

J. Vanterler daC. Sousa and E. Capelas de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018), 50-56. doi: 10.1016/j.aml.2018.01.016. Google Scholar

[23]

H. Vu, Random fractional functional differential equations, Int. J. Nonlinear Anal. and Appl., 7 (2016), 253-267. Google Scholar

[24]

J. WangL. Lv and Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 63 (2011), 1-10. doi: 10.14232/ejqtde.2011.1.63. Google Scholar

[25]

Y. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comp., 266 (2015), 850-859. doi: 10.1016/j.amc.2015.05.144. Google Scholar

[26]

J. WangY. Zhou and M. Fe$\ddot{c}$kanc, Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comp. Math. Appl., 64 (2012), 3389-3405. doi: 10.1016/j.camwa.2012.02.021. Google Scholar

[27]

H. YeJ. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081. doi: 10.1016/j.jmaa.2006.05.061. Google Scholar

[1]

Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 911-923. doi: 10.3934/dcdss.2020053

[2]

Graeme D. Chalmers, Desmond J. Higham. Convergence and stability analysis for implicit simulations of stochastic differential equations with random jump magnitudes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 47-64. doi: 10.3934/dcdsb.2008.9.47

[3]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

[4]

Saïd Abbas, Mouffak Benchohra, John R. Graef. Coupled systems of Hilfer fractional differential inclusions in banach spaces. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2479-2493. doi: 10.3934/cpaa.2018118

[5]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

[6]

Matteo Bonforte, Yannick Sire, Juan Luis Vázquez. Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5725-5767. doi: 10.3934/dcds.2015.35.5725

[7]

Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037

[8]

Aaron Hoffman, Benjamin Kennedy. Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 137-167. doi: 10.3934/dcds.2011.30.137

[9]

Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191

[10]

Farid Tari. Two-parameter families of implicit differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 139-162. doi: 10.3934/dcds.2005.13.139

[11]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[12]

Ndolane Sene. Mittag-Leffler input stability of fractional differential equations and its applications. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 867-880. doi: 10.3934/dcdss.2020050

[13]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[14]

Alexander Quaas, Aliang Xia. Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in $\mathbb{R}^N$ involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2653-2668. doi: 10.3934/dcds.2017113

[15]

Ludwig Arnold, Igor Chueshov. Cooperative random and stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 1-33. doi: 10.3934/dcds.2001.7.1

[16]

Guangying Lv, Mingxin Wang. Existence, uniqueness and stability of traveling wave fronts of discrete quasi-linear equations with delay. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 415-433. doi: 10.3934/dcdsb.2010.13.415

[17]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

[18]

Krunal B. Kachhia. Comparative study of fractional Fokker-Planck equations with various fractional derivative operators. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 741-754. doi: 10.3934/dcdss.2020041

[19]

Nguyen Dinh Cong, Doan Thai Son. On integral separation of bounded linear random differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 995-1007. doi: 10.3934/dcdss.2016038

[20]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

2018 Impact Factor: 0.545

Article outline

[Back to Top]