• Previous Article
    A new numerical scheme applied on re-visited nonlinear model of predator-prey based on derivative with non-local and non-singular kernel
  • DCDS-S Home
  • This Issue
  • Next Article
    Models of fluid flowing in non-conventional media: New numerical analysis
doi: 10.3934/dcdss.2020025

Augmented upwind numerical schemes for a fractional advection-dispersion equation in fractured groundwater systems

Institute for Groundwater Studies, Faculty of Agricultural and Natural Sciences, University of the Free State, 9301, Bloemfontein, Free State, South Africa

* Corresponding author: A. Allwright

Received  June 2018 Revised  July 2018 Published  March 2019

The anomalous transport of particles within non-linear systems cannot be captured accurately with the classical advection-dispersion equation, due to its inability to incorporate non-linearity of geological formations in the mathematical formulation. Fortunately, fractional differential operators have been recognised as appropriate mathematical tools to describe such natural phenomena. The classical advection-dispersion equation is adapted to a fractional model by replacing the time differential operator by a time fractional derivative to include the power-law waiting time distribution. The advection component is adapted by replacing the local differential by a fractional space derivative to account for mean-square displacement from normal to super-advection. Due to the complexity of this new model, new numerical schemes are suggested, including an upwind Crank-Nicholson and weighted upwind-downwind scheme. Both numerical schemes are used to solve the modified fractional advection-dispersion model and the conditions of their stability established.

Citation: Amy Allwright, Abdon Atangana. Augmented upwind numerical schemes for a fractional advection-dispersion equation in fractured groundwater systems. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020025
References:
[1]

A. Allwright and A. Atangana, Augmented upwind numerical schemes for the groundwater transport advection-dispersion equation with local operators, International Journal for Numerical Methods in Fluids, 87 (2018), 437-462. doi: 10.1002/fld.4497. Google Scholar

[2]

A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation, Journal of Computational Physics, 293 (2015), 104-114. doi: 10.1016/j.jcp.2014.12.043. Google Scholar

[3]

A. Atangana and K. M. Owolabi, New numerical approach for fractional differential equations, Mathematical Modelling of Natural Phenomena, 13 (2018), Art. 3, 21 pp. doi: 10.1051/mmnp/2018010. Google Scholar

[4]

D. A. BensonS. W. Wheatcraft and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resources Research, 36 (2000), 1403-1412. doi: 10.1029/2000WR900031. Google Scholar

[5]

D. A. Benson, The Fractional Advection-Dispersion Equation: Development and Application, PhD thesis, University of Nevada, Reno, 1998. doi: 10.1029/2000WR900031. Google Scholar

[6]

K. DiethelmN. J. FordA. D. Freed and Y. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Computer methods in applied mechanics and engineering, 194 (2005), 743-773. doi: 10.1016/j.cma.2004.06.006. Google Scholar

[7]

R. Fazio and A. Jannelli, A finite difference method on quasi-uniform mesh for time-fractional advection-diffusion equations with source term, arXiv preprint arXiv 1801.07160.Google Scholar

[8]

R. Gnitchogna and A. Atangana, New two step laplace adam-bashforth method for integer a noninteger order partial differential equations, Numerical Methods for Partial Differential Equations, 34 (2018), 1739-1758. doi: 10.1002/num.22216. Google Scholar

[9]

F. Huang and F. Liu, The fundamental solution of the space-time fractional advection-dispersion equation, Journal of Applied Mathematics and Computing, 18 (2005), 339-350. doi: 10.1007/BF02936577. Google Scholar

[10]

Q. HuangG. Huang and H. Zhan, A finite element solution for the fractional advection–dispersion equation, Advances in Water Resources, 31 (2008), 1578-1589. doi: 10.1016/j.advwatres.2008.07.002. Google Scholar

[11]

H. Jafari and H. Tajadodi, Numerical solutions of the fractional advection-dispersion equation, Prog. Fract. Differ. Appl, 1 (2015), 37-45. Google Scholar

[12]

S. Javadi, M. Jani and E. Babolian, A numerical scheme for space-time fractional advection-dispersion equation, arXiv preprint, arXiv: 1512.06629.Google Scholar

[13]

X. Li and H. Rui, A high-order fully conservative block-centered finite difference method for the time-fractional advection–dispersion equation, Applied Numerical Mathematics, 124 (2018), 89-109. doi: 10.1016/j.apnum.2017.10.004. Google Scholar

[14]

Z. LiZ. Liang and Y. Yan, High-order numerical methods for solving time fractional partial differential equations, Journal of Scientific Computing, 71 (2017), 785-803. doi: 10.1007/s10915-016-0319-1. Google Scholar

[15]

F. LiuV. V. AnhI. Turner and P. Zhuang, Time fractional advection-dispersion equation, Journal of Applied Mathematics and Computing, 13 (2003), 233-245. doi: 10.1007/BF02936089. Google Scholar

[16]

F. LiuP. ZhuangV. AnhI. Turner and K. Burrage, Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation, Applied Mathematics and Computation, 191 (2007), 12-20. doi: 10.1016/j.amc.2006.08.162. Google Scholar

[17]

T. Liu and M. Hou, A fast implicit finite difference method for fractional advection-dispersion equations with fractional derivative boundary conditions, Advances in Mathematical Physics, 2017 (2017), Art. ID 8716752, 8 pp. doi: 10.1155/2017/8716752. Google Scholar

[18]

Z. Liu and X. Li, A crank–nicolson difference scheme for the time variable fractional mobile–immobile advection–dispersion equation, Journal of Applied Mathematics and Computing, 56 (2018), 391-410. doi: 10.1007/s12190-016-1079-7. Google Scholar

[19]

V. E. LynchB. A. CarrerasD. del Castillo-NegreteK. Ferreira-Mejias and H. Hicks, Numerical methods for the solution of partial differential equations of fractional order, Journal of Computational Physics, 192 (2003), 406-421. doi: 10.1016/j.jcp.2003.07.008. Google Scholar

[20]

M. M. Meerschaert, Fractional calculus, anomalous diffusion, and probability, in Fractional Dynamics: Recent Advances, World Scientific, 2012,265–284. Google Scholar

[21]

M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection–dispersion flow equations, Journal of Computational and Applied Mathematics, 172 (2004), 65-77. doi: 10.1016/j.cam.2004.01.033. Google Scholar

[22]

R. MetzlerW. G. Glöckle and T. F. Nonnenmacher, Fractional model equation for anomalous diffusion, Physica A: Statistical Mechanics and its Applications, 211 (1994), 13-24. Google Scholar

[23]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics reports, 339 (2000), 1-77. doi: 10.1016/S0370-1573(00)00070-3. Google Scholar

[24]

G. PangW. Chen and Z. Fu, Space-fractional advection–dispersion equations by the kansa method, Journal of Computational Physics, 293 (2015), 280-296. doi: 10.1016/j.jcp.2014.07.020. Google Scholar

[25]

Y. Povstenko, Space-time-fractional advection diffusion equation in a plane, in Advances in Modelling and Control of Non-Integer-Order Systems, Springer, 320 (2015), 275–284. Google Scholar

[26]

Y. Povstenko, Fundamental solutions to time-fractional advection diffusion equation in a case of two space variables, Mathematical Problems in Engineering, 2014 (2014), Art. ID 705364, 7 pp. doi: 10.1155/2014/705364. Google Scholar

[27]

Q. Rubbab, I. A. Mirza and M. Z. A. Qureshi, Analytical solutions to the fractional advection-diffusion equation with time-dependent pulses on the boundary, AIP Advances, 6 (2016), 075318. doi: 10.1063/1.4960108. Google Scholar

[28]

W. Schneider and W. Wyss, Fractional diffusion and wave equations, Journal of Mathematical Physics, 30 (1989), 134-144. doi: 10.1063/1.528578. Google Scholar

[29]

S. ShenF. LiuV. AnhI. Turner and J. Chen, A novel numerical approximation for the space fractional advection–dispersion equation, IMA journal of Applied Mathematics, 79 (2014), 431-444. doi: 10.1093/imamat/hxs073. Google Scholar

[30]

E. Sousa, Finite difference approximations for a fractional advection diffusion problem, Journal of Computational Physics, 228 (2009), 4038-4054. doi: 10.1016/j.jcp.2009.02.011. Google Scholar

[31]

E. Sousa and C. Li, A weighted finite difference method for the fractional diffusion equation based on the riemann–liouville derivative, Applied Numerical Mathematics, 90 (2015), 22-37. doi: 10.1016/j.apnum.2014.11.007. Google Scholar

[32]

L. SuW. Wang and Q. Xu, Finite difference methods for fractional dispersion equations, Applied Mathematics and Computation, 216 (2010), 3329-3334. doi: 10.1016/j.amc.2010.04.060. Google Scholar

[33]

A. A. Tateishi, H. V. Ribeiro and E. K. Lenzi, The role of fractional time-derivative operators on anomalous diffusion, Frontiers in Physics, 5 (2017), 52.Google Scholar

[34]

K. Wang and H. Wang, A fast characteristic finite difference method for fractional advection–diffusion equations, Advances in Water Resources, 34 (2011), 810-816. doi: 10.1016/j.advwatres.2010.11.003. Google Scholar

[35]

W. Wyss, The fractional diffusion equation, Journal of Mathematical Physics, 27 (1986), 2782-2785. doi: 10.1063/1.527251. Google Scholar

[36]

Y. YirangL. Changfeng and S. Tongjun, The second-order upwind finite difference fractional steps method for moving boundary value problem of oil-water percolation, Numerical Methods for Partial Differential Equations, 30 (2014), 1103-1129. doi: 10.1002/num.21859. Google Scholar

[37]

Y. YirangY. QingL. Changfeng and S. Tongjun, Numerical method of mixed finite volume-modified upwind fractional step difference for three-dimensional semiconductor device transient behavior problems, Acta Mathematica Scientia, 37 (2017), 259-279. doi: 10.1016/S0252-9602(16)30129-1. Google Scholar

[38]

Y. Yuan, The upwind finite difference fractional steps methods for two-phase compressible flow in porous media, Numerical Methods for Partial Differential Equations: An International Journal, 19 (2003), 67-88. doi: 10.1002/num.10036. Google Scholar

show all references

References:
[1]

A. Allwright and A. Atangana, Augmented upwind numerical schemes for the groundwater transport advection-dispersion equation with local operators, International Journal for Numerical Methods in Fluids, 87 (2018), 437-462. doi: 10.1002/fld.4497. Google Scholar

[2]

A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation, Journal of Computational Physics, 293 (2015), 104-114. doi: 10.1016/j.jcp.2014.12.043. Google Scholar

[3]

A. Atangana and K. M. Owolabi, New numerical approach for fractional differential equations, Mathematical Modelling of Natural Phenomena, 13 (2018), Art. 3, 21 pp. doi: 10.1051/mmnp/2018010. Google Scholar

[4]

D. A. BensonS. W. Wheatcraft and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resources Research, 36 (2000), 1403-1412. doi: 10.1029/2000WR900031. Google Scholar

[5]

D. A. Benson, The Fractional Advection-Dispersion Equation: Development and Application, PhD thesis, University of Nevada, Reno, 1998. doi: 10.1029/2000WR900031. Google Scholar

[6]

K. DiethelmN. J. FordA. D. Freed and Y. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Computer methods in applied mechanics and engineering, 194 (2005), 743-773. doi: 10.1016/j.cma.2004.06.006. Google Scholar

[7]

R. Fazio and A. Jannelli, A finite difference method on quasi-uniform mesh for time-fractional advection-diffusion equations with source term, arXiv preprint arXiv 1801.07160.Google Scholar

[8]

R. Gnitchogna and A. Atangana, New two step laplace adam-bashforth method for integer a noninteger order partial differential equations, Numerical Methods for Partial Differential Equations, 34 (2018), 1739-1758. doi: 10.1002/num.22216. Google Scholar

[9]

F. Huang and F. Liu, The fundamental solution of the space-time fractional advection-dispersion equation, Journal of Applied Mathematics and Computing, 18 (2005), 339-350. doi: 10.1007/BF02936577. Google Scholar

[10]

Q. HuangG. Huang and H. Zhan, A finite element solution for the fractional advection–dispersion equation, Advances in Water Resources, 31 (2008), 1578-1589. doi: 10.1016/j.advwatres.2008.07.002. Google Scholar

[11]

H. Jafari and H. Tajadodi, Numerical solutions of the fractional advection-dispersion equation, Prog. Fract. Differ. Appl, 1 (2015), 37-45. Google Scholar

[12]

S. Javadi, M. Jani and E. Babolian, A numerical scheme for space-time fractional advection-dispersion equation, arXiv preprint, arXiv: 1512.06629.Google Scholar

[13]

X. Li and H. Rui, A high-order fully conservative block-centered finite difference method for the time-fractional advection–dispersion equation, Applied Numerical Mathematics, 124 (2018), 89-109. doi: 10.1016/j.apnum.2017.10.004. Google Scholar

[14]

Z. LiZ. Liang and Y. Yan, High-order numerical methods for solving time fractional partial differential equations, Journal of Scientific Computing, 71 (2017), 785-803. doi: 10.1007/s10915-016-0319-1. Google Scholar

[15]

F. LiuV. V. AnhI. Turner and P. Zhuang, Time fractional advection-dispersion equation, Journal of Applied Mathematics and Computing, 13 (2003), 233-245. doi: 10.1007/BF02936089. Google Scholar

[16]

F. LiuP. ZhuangV. AnhI. Turner and K. Burrage, Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation, Applied Mathematics and Computation, 191 (2007), 12-20. doi: 10.1016/j.amc.2006.08.162. Google Scholar

[17]

T. Liu and M. Hou, A fast implicit finite difference method for fractional advection-dispersion equations with fractional derivative boundary conditions, Advances in Mathematical Physics, 2017 (2017), Art. ID 8716752, 8 pp. doi: 10.1155/2017/8716752. Google Scholar

[18]

Z. Liu and X. Li, A crank–nicolson difference scheme for the time variable fractional mobile–immobile advection–dispersion equation, Journal of Applied Mathematics and Computing, 56 (2018), 391-410. doi: 10.1007/s12190-016-1079-7. Google Scholar

[19]

V. E. LynchB. A. CarrerasD. del Castillo-NegreteK. Ferreira-Mejias and H. Hicks, Numerical methods for the solution of partial differential equations of fractional order, Journal of Computational Physics, 192 (2003), 406-421. doi: 10.1016/j.jcp.2003.07.008. Google Scholar

[20]

M. M. Meerschaert, Fractional calculus, anomalous diffusion, and probability, in Fractional Dynamics: Recent Advances, World Scientific, 2012,265–284. Google Scholar

[21]

M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection–dispersion flow equations, Journal of Computational and Applied Mathematics, 172 (2004), 65-77. doi: 10.1016/j.cam.2004.01.033. Google Scholar

[22]

R. MetzlerW. G. Glöckle and T. F. Nonnenmacher, Fractional model equation for anomalous diffusion, Physica A: Statistical Mechanics and its Applications, 211 (1994), 13-24. Google Scholar

[23]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics reports, 339 (2000), 1-77. doi: 10.1016/S0370-1573(00)00070-3. Google Scholar

[24]

G. PangW. Chen and Z. Fu, Space-fractional advection–dispersion equations by the kansa method, Journal of Computational Physics, 293 (2015), 280-296. doi: 10.1016/j.jcp.2014.07.020. Google Scholar

[25]

Y. Povstenko, Space-time-fractional advection diffusion equation in a plane, in Advances in Modelling and Control of Non-Integer-Order Systems, Springer, 320 (2015), 275–284. Google Scholar

[26]

Y. Povstenko, Fundamental solutions to time-fractional advection diffusion equation in a case of two space variables, Mathematical Problems in Engineering, 2014 (2014), Art. ID 705364, 7 pp. doi: 10.1155/2014/705364. Google Scholar

[27]

Q. Rubbab, I. A. Mirza and M. Z. A. Qureshi, Analytical solutions to the fractional advection-diffusion equation with time-dependent pulses on the boundary, AIP Advances, 6 (2016), 075318. doi: 10.1063/1.4960108. Google Scholar

[28]

W. Schneider and W. Wyss, Fractional diffusion and wave equations, Journal of Mathematical Physics, 30 (1989), 134-144. doi: 10.1063/1.528578. Google Scholar

[29]

S. ShenF. LiuV. AnhI. Turner and J. Chen, A novel numerical approximation for the space fractional advection–dispersion equation, IMA journal of Applied Mathematics, 79 (2014), 431-444. doi: 10.1093/imamat/hxs073. Google Scholar

[30]

E. Sousa, Finite difference approximations for a fractional advection diffusion problem, Journal of Computational Physics, 228 (2009), 4038-4054. doi: 10.1016/j.jcp.2009.02.011. Google Scholar

[31]

E. Sousa and C. Li, A weighted finite difference method for the fractional diffusion equation based on the riemann–liouville derivative, Applied Numerical Mathematics, 90 (2015), 22-37. doi: 10.1016/j.apnum.2014.11.007. Google Scholar

[32]

L. SuW. Wang and Q. Xu, Finite difference methods for fractional dispersion equations, Applied Mathematics and Computation, 216 (2010), 3329-3334. doi: 10.1016/j.amc.2010.04.060. Google Scholar

[33]

A. A. Tateishi, H. V. Ribeiro and E. K. Lenzi, The role of fractional time-derivative operators on anomalous diffusion, Frontiers in Physics, 5 (2017), 52.Google Scholar

[34]

K. Wang and H. Wang, A fast characteristic finite difference method for fractional advection–diffusion equations, Advances in Water Resources, 34 (2011), 810-816. doi: 10.1016/j.advwatres.2010.11.003. Google Scholar

[35]

W. Wyss, The fractional diffusion equation, Journal of Mathematical Physics, 27 (1986), 2782-2785. doi: 10.1063/1.527251. Google Scholar

[36]

Y. YirangL. Changfeng and S. Tongjun, The second-order upwind finite difference fractional steps method for moving boundary value problem of oil-water percolation, Numerical Methods for Partial Differential Equations, 30 (2014), 1103-1129. doi: 10.1002/num.21859. Google Scholar

[37]

Y. YirangY. QingL. Changfeng and S. Tongjun, Numerical method of mixed finite volume-modified upwind fractional step difference for three-dimensional semiconductor device transient behavior problems, Acta Mathematica Scientia, 37 (2017), 259-279. doi: 10.1016/S0252-9602(16)30129-1. Google Scholar

[38]

Y. Yuan, The upwind finite difference fractional steps methods for two-phase compressible flow in porous media, Numerical Methods for Partial Differential Equations: An International Journal, 19 (2003), 67-88. doi: 10.1002/num.10036. Google Scholar

Table 1.  Summary of the established stability condition, and corresponding assumption, for each numerical approximation scheme
Scheme Assumptions Stability condition
Upwind (explicit) $ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha }+v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } > \frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Unstable
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha }+v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } <\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Conditionally stable
$ \frac{4D_{L}}{ \left( \Delta x \right) ^{2}} +v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( 2-2cos \phi \right) \beta _{m}+\frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} <\frac{2 \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } $
Upwind (implicit) $ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha }+v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha }>\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Unconditionally stable / Conditionally stable
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} <v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( 2 \delta _{n,m}^{ \alpha } + \left( 2-2cos \phi \right) \beta _{m} \right) $
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha }+v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } <\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Conditionally stable
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( 2+ \beta _{n} \right) <v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( 2-2cos \phi \right) \beta _{m} +\frac{4D_{L}}{ \left( \Delta x \right) ^{2}} $
Upwind CrankNicolson $ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha }>v\frac{0.5 \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } +\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Unconditionally stable / Conditionally stable
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} <v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( \delta _{n,m}^{ \alpha } + \beta _{m} \left( 1-cos \phi \right) \right) $
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha } <v\frac{0.5 \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha }+\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Conditionally stable
$ \frac{2D_{L}}{ \left( \Delta x \right) ^{2}} <\frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } $
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} <v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( \delta _{n,m}^{ \alpha } + \beta _{m} \left( 1-cos \phi \right) \right) $
$ \frac{4D_{L}}{ \left( \Delta x \right) ^{2}}+\frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} <\frac{2 \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) }+v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( 1-cos \phi \right) \beta _{m} $
Weighted upwinddownwind (explicit) $ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha } + v \left( 2 \theta -1 \right) \frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha }>\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Unstable
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha } + v \left( 2 \theta -1 \right) \frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } <\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Conditionally stable / Unstable
Weighted upwinddownwind (implicit) $ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha } +v \left( 2 \theta -1 \right) \frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha }>\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Unconditionally stable / conditionally stable
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} <v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } \left( \theta +1 \right) + 2v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{m} \left( 1-cos \phi \right) $
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha } +v \left( 2 \theta -1 \right) \frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } <\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ $ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( 2+ \beta _{n} \right) < 2 v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } \left( 1- \theta \right) + 2v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{m} \left( 1-cos \phi \right) +\frac{4D_{L}}{ \left( \Delta x \right) ^{2}} $
Scheme Assumptions Stability condition
Upwind (explicit) $ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha }+v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } > \frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Unstable
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha }+v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } <\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Conditionally stable
$ \frac{4D_{L}}{ \left( \Delta x \right) ^{2}} +v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( 2-2cos \phi \right) \beta _{m}+\frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} <\frac{2 \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } $
Upwind (implicit) $ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha }+v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha }>\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Unconditionally stable / Conditionally stable
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} <v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( 2 \delta _{n,m}^{ \alpha } + \left( 2-2cos \phi \right) \beta _{m} \right) $
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha }+v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } <\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Conditionally stable
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( 2+ \beta _{n} \right) <v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( 2-2cos \phi \right) \beta _{m} +\frac{4D_{L}}{ \left( \Delta x \right) ^{2}} $
Upwind CrankNicolson $ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha }>v\frac{0.5 \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } +\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Unconditionally stable / Conditionally stable
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} <v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( \delta _{n,m}^{ \alpha } + \beta _{m} \left( 1-cos \phi \right) \right) $
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha } <v\frac{0.5 \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha }+\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Conditionally stable
$ \frac{2D_{L}}{ \left( \Delta x \right) ^{2}} <\frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } $
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} <v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( \delta _{n,m}^{ \alpha } + \beta _{m} \left( 1-cos \phi \right) \right) $
$ \frac{4D_{L}}{ \left( \Delta x \right) ^{2}}+\frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} <\frac{2 \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) }+v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( 1-cos \phi \right) \beta _{m} $
Weighted upwinddownwind (explicit) $ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha } + v \left( 2 \theta -1 \right) \frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha }>\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Unstable
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha } + v \left( 2 \theta -1 \right) \frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } <\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Conditionally stable / Unstable
Weighted upwinddownwind (implicit) $ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha } +v \left( 2 \theta -1 \right) \frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha }>\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ Unconditionally stable / conditionally stable
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{n} <v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } \left( \theta +1 \right) + 2v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{m} \left( 1-cos \phi \right) $
$ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,n-1}^{ \alpha } +v \left( 2 \theta -1 \right) \frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } <\frac{2D_{L}}{ \left( \Delta x \right) ^{2}} $ $ \frac{ \left( \Delta t \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \left( 2+ \beta _{n} \right) < 2 v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \delta _{n,m}^{ \alpha } \left( 1- \theta \right) + 2v\frac{ \left( \Delta x \right) ^{- \alpha }}{ \Gamma \left(2 - \alpha \right) } \beta _{m} \left( 1-cos \phi \right) +\frac{4D_{L}}{ \left( \Delta x \right) ^{2}} $
[1]

Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019

[2]

Yuanwei Qi. Anomalous exponents and RG for nonlinear diffusion equations. Conference Publications, 2005, 2005 (Special) : 738-745. doi: 10.3934/proc.2005.2005.738

[3]

Stephen Thompson, Thomas I. Seidman. Approximation of a semigroup model of anomalous diffusion in a bounded set. Evolution Equations & Control Theory, 2013, 2 (1) : 173-192. doi: 10.3934/eect.2013.2.173

[4]

Wei Qu, Siu-Long Lei, Seak-Weng Vong. A note on the stability of a second order finite difference scheme for space fractional diffusion equations. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 317-325. doi: 10.3934/naco.2014.4.317

[5]

Shota Sato, Eiji Yanagida. Appearance of anomalous singularities in a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2012, 11 (1) : 387-405. doi: 10.3934/cpaa.2012.11.387

[6]

Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223

[7]

Ronald E. Mickens. A nonstandard finite difference scheme for the drift-diffusion system. Conference Publications, 2009, 2009 (Special) : 558-563. doi: 10.3934/proc.2009.2009.558

[8]

Alexandre Caboussat, Roland Glowinski. A Numerical Method for a Non-Smooth Advection-Diffusion Problem Arising in Sand Mechanics. Communications on Pure & Applied Analysis, 2009, 8 (1) : 161-178. doi: 10.3934/cpaa.2009.8.161

[9]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[10]

Patrick Henning, Mario Ohlberger. The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks & Heterogeneous Media, 2010, 5 (4) : 711-744. doi: 10.3934/nhm.2010.5.711

[11]

Yohan Penel. An explicit stable numerical scheme for the $1D$ transport equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 641-656. doi: 10.3934/dcdss.2012.5.641

[12]

Assyr Abdulle. Multiscale methods for advection-diffusion problems. Conference Publications, 2005, 2005 (Special) : 11-21. doi: 10.3934/proc.2005.2005.11

[13]

Lena-Susanne Hartmann, Ilya Pavlyukevich. Advection-diffusion equation on a half-line with boundary Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 637-655. doi: 10.3934/dcdsb.2018200

[14]

J.R. Stirling. Chaotic advection, transport and patchiness in clouds of pollution in an estuarine flow. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 263-284. doi: 10.3934/dcdsb.2003.3.263

[15]

Catherine Choquet, Marie-Christine Néel. From particles scale to anomalous or classical convection-diffusion models with path integrals. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 207-238. doi: 10.3934/dcdss.2014.7.207

[16]

Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644

[17]

M. B. A. Mansour. Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 83-91. doi: 10.3934/mbe.2009.6.83

[18]

Chris Cosner. Reaction-diffusion-advection models for the effects and evolution of dispersal. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1701-1745. doi: 10.3934/dcds.2014.34.1701

[19]

Michael Taylor. Random walks, random flows, and enhanced diffusivity in advection-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1261-1287. doi: 10.3934/dcdsb.2012.17.1261

[20]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4989-4995. doi: 10.3934/dcds.2014.34.4989

2018 Impact Factor: 0.545

Article outline

Figures and Tables

[Back to Top]