October  2019, 12(6): 1623-1633. doi: 10.3934/dcdss.2019110

Complex ray in anisotropic solids: Extended Fermat's principle

CNRS, University of Bordeaux, Institut de Mécanique et d'Ingénierie - Bordeaux, 351, cours de la libération - 33405 Talence, France

* Corresponding author: Marc Deschamps

Received  May 2018 Revised  June 2018 Published  November 2018

In contrast to homogeneous plane waves, solutions of the Chris-toffel equation for anisotropic media, for which a determined number of rays can be observed in a fixed direction of observation, inhomogeneous plane waves provide a continuum of "rays" that propagate in this direction. From this continuum, some complex plane waves can be extracted for verifying a definition of quasi-arrivals, based on the condition that the time of flight would vary the less in extension to the Fermat's principle that stipulates a stationary time of flight for wave arrivals. The dynamic response in some angular zones contain prominent, although not singular, features whose arrivals cannot be described by the classical ray theory. These wave packet's arrivals can be described by quasi-fronts associated to specific inhomogeneous plane waves. The extent of the phenomena depends on the degree of anisotropy. For weak anisotropy, such quasi-fronts can be observed. For strong anisotropy, the use of inhomogeneous plane waves, due to their complex slowness vector, permits a simple description of quasi-arrivals that refer to the internal diffraction phenomenon. Some examples are given for different wave surfaces, showing how the wave fronts can be extended beyond the cuspidal edges for forming closed wave surfaces.

Citation: Marc Deschamps, Olivier Poncelet. Complex ray in anisotropic solids: Extended Fermat's principle. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1623-1633. doi: 10.3934/dcdss.2019110
References:
[1]

B. AudoinC. Bescond and M. Deschamps, Recovering of stiffness coefficients of anisotropic materials from point-like generation and detection of acoustic waves, J. Appl. Phys., 80 (1996), 3760-3771. Google Scholar

[2]

B. A. Auld, Acoustic Fields and Waves in Solids, New York, 1973.Google Scholar

[3]

Ph. Boulanger and M. Hayes, Bivectors and Waves in Mechanics and Optics, Chapman and Hall, London, 1993. doi: 10.1007/978-1-4899-4531-0. Google Scholar

[4]

C. CorbelF. GuilloisD. RoyerM. A. Fink and R. De Mol, Laser generated elastic waves in carbon-epoxy composite, IEEE Trans. Ultr. Fer. Freq. Contr., 40 (1993), 710-716. Google Scholar

[5]

M. Deschamps and O. Poncelet, Complex rays and internal diffraction at the cusp edge, NATO Science series, Mathematics, Physics and Chemistry, 163 (2004), 131-142. doi: 10.1007/1-4020-2387-1_6. Google Scholar

[6]

M. Deschamps, Reflection and refraction of the inhomogeneous plane wave, Acoustic Interaction with Submerged Elastic Structures, Part I, World Scientific Publishing Company, Edited by A. Guran, J. Ripoche and F. Ziegler, 5 (1996), 164–206. doi: 10.1142/9789812830593_0006. Google Scholar

[7]

A. G. Every, Ballistic phonons and the shape of the ray surface in cubic crystals, Phys. Rev. B, 24 (1981), 3456-3467. Google Scholar

[8]

M. R. HauserR. L. Weaver and J. P. Wolfe, Internal diffraction of ultrasound in crystal: Phonon focusing at long wavelength, Phys. Rev. Lett., 68 (1992), 2604-2607. Google Scholar

[9]

M. Hayes, Inhomogeneous plane waves, Arch. Rational Mech. Anal., 85 (1984), 41-79. doi: 10.1007/BF00250866. Google Scholar

[10]

M. Hayes, Energy flux for trains of inhomogeneous plane waves, Proc. R. Soc. Lond. A, 370 (1980), 417-429. Google Scholar

[11]

K. Y. KimK. C. BretzA. G. Every and W. Sachse, Ultrasonic imaging of the group velocity surface about the cubic axis in silicon, J. Appl. Phys., 79 (1996), 1857-1863. Google Scholar

[12]

A. MouradM. Deschamps and B. Castagnède, Acoustic waves generated by a line impact in an anisotropic medium, Acustica - Acta Acustica, 82 (1996), 839-851. Google Scholar

[13]

B. Poirée, Les ondes planes évanescentes dans les fluides parfaits et les solides élastiques, J. Acoustique, 2 (1989), 205-216. Google Scholar

[14]

O. PonceletM. DeschampsA.G. Every and B. Audoin, Extension to cuspidal edges of wave surfaces of anisotropic solids: Treatment of near cusp behavior, Review in Quantitative Nondestructive Evaluation, ed. by D.O. Thompson and D.E. Chiment, 20A (2000), 51-58. Google Scholar

[15]

D. Royer and E. Dieulesaint, Ondes élastiques dans les solides, volume 1, Masson, Paris, 1996.Google Scholar

[16]

J. H. M. T. Van Der Hijden, Propagation of Transient Elastic Waves in Stratified Anisotropic Media, North-Holland series in Applied Mathematics and Mechanics, 32. North-Holland Publishing Co., Amsterdam, 1987. Google Scholar

[17]

R. L. WeaverM. R. Hauser and J. P. Wolfe, Acoustic flux imaging in anisotropic media, Z Phys. B, 90 (1993), 27-46. Google Scholar

show all references

References:
[1]

B. AudoinC. Bescond and M. Deschamps, Recovering of stiffness coefficients of anisotropic materials from point-like generation and detection of acoustic waves, J. Appl. Phys., 80 (1996), 3760-3771. Google Scholar

[2]

B. A. Auld, Acoustic Fields and Waves in Solids, New York, 1973.Google Scholar

[3]

Ph. Boulanger and M. Hayes, Bivectors and Waves in Mechanics and Optics, Chapman and Hall, London, 1993. doi: 10.1007/978-1-4899-4531-0. Google Scholar

[4]

C. CorbelF. GuilloisD. RoyerM. A. Fink and R. De Mol, Laser generated elastic waves in carbon-epoxy composite, IEEE Trans. Ultr. Fer. Freq. Contr., 40 (1993), 710-716. Google Scholar

[5]

M. Deschamps and O. Poncelet, Complex rays and internal diffraction at the cusp edge, NATO Science series, Mathematics, Physics and Chemistry, 163 (2004), 131-142. doi: 10.1007/1-4020-2387-1_6. Google Scholar

[6]

M. Deschamps, Reflection and refraction of the inhomogeneous plane wave, Acoustic Interaction with Submerged Elastic Structures, Part I, World Scientific Publishing Company, Edited by A. Guran, J. Ripoche and F. Ziegler, 5 (1996), 164–206. doi: 10.1142/9789812830593_0006. Google Scholar

[7]

A. G. Every, Ballistic phonons and the shape of the ray surface in cubic crystals, Phys. Rev. B, 24 (1981), 3456-3467. Google Scholar

[8]

M. R. HauserR. L. Weaver and J. P. Wolfe, Internal diffraction of ultrasound in crystal: Phonon focusing at long wavelength, Phys. Rev. Lett., 68 (1992), 2604-2607. Google Scholar

[9]

M. Hayes, Inhomogeneous plane waves, Arch. Rational Mech. Anal., 85 (1984), 41-79. doi: 10.1007/BF00250866. Google Scholar

[10]

M. Hayes, Energy flux for trains of inhomogeneous plane waves, Proc. R. Soc. Lond. A, 370 (1980), 417-429. Google Scholar

[11]

K. Y. KimK. C. BretzA. G. Every and W. Sachse, Ultrasonic imaging of the group velocity surface about the cubic axis in silicon, J. Appl. Phys., 79 (1996), 1857-1863. Google Scholar

[12]

A. MouradM. Deschamps and B. Castagnède, Acoustic waves generated by a line impact in an anisotropic medium, Acustica - Acta Acustica, 82 (1996), 839-851. Google Scholar

[13]

B. Poirée, Les ondes planes évanescentes dans les fluides parfaits et les solides élastiques, J. Acoustique, 2 (1989), 205-216. Google Scholar

[14]

O. PonceletM. DeschampsA.G. Every and B. Audoin, Extension to cuspidal edges of wave surfaces of anisotropic solids: Treatment of near cusp behavior, Review in Quantitative Nondestructive Evaluation, ed. by D.O. Thompson and D.E. Chiment, 20A (2000), 51-58. Google Scholar

[15]

D. Royer and E. Dieulesaint, Ondes élastiques dans les solides, volume 1, Masson, Paris, 1996.Google Scholar

[16]

J. H. M. T. Van Der Hijden, Propagation of Transient Elastic Waves in Stratified Anisotropic Media, North-Holland series in Applied Mathematics and Mechanics, 32. North-Holland Publishing Co., Amsterdam, 1987. Google Scholar

[17]

R. L. WeaverM. R. Hauser and J. P. Wolfe, Acoustic flux imaging in anisotropic media, Z Phys. B, 90 (1993), 27-46. Google Scholar

Figure 1.  Absolute value of the derivative of the real slowness component on the $\mathbf{X}_{2}$-axis with respect the slowness component in the $\mathbf{n}$-direction versus the phase velocity along the $\mathbf{n}_{e}$-direction (in $\mathrm{mm}/\mathrm{\mu s}$)
Figure 2.  Group velocity $c_{e}$ (in $\mathrm{mm}/\mathrm{\mu s}$) in polar coordinates for various directions $\mathbf{n}_{e}$ and various anisotropy parameters $\epsilon$. $L$ and $T$ real waves (solid line), $L_{e}$ and $T_{e}$ complex waves (dashed line)
Figure 3.  3D polar waveforms (radius: $r/t$, angle: $\theta$) overlaid with the real and complex wavefronts (grey line). Black: zero amplitude; White: highest amplitude
Figure 4.  Group velocity $c_{e}$ in polar coordinates for various directions $\mathbf{n}_{e}$ for various anisotropy parameters $\epsilon$. Real wavefronts (solid line) and complex wavefronts (dashed line). Velocity associated with the position of the maximum of amplitude in the waveform (circle)
Figure 5.  Radial displacement $u_{r}$ on an unbounded crystalline space submitted to a delta-function pulse line force versus $1/s_{e}^{\prime}$. Total contribution (solid line), longitudinal contribution (- - -) and transverse contribution (...)
Figure 6.  Wavefronts and 3D polar waveforms for a long fibers composite material
[1]

Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125.

[2]

B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems & Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405

[3]

D. G. Aronson, N. V. Mantzaris, Hans Othmer. Wave propagation and blocking in inhomogeneous media. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 843-876. doi: 10.3934/dcds.2005.13.843

[4]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control & Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[5]

Joseph J Kohn. Nirenberg's contributions to complex analysis. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 537-545. doi: 10.3934/dcds.2011.30.537

[6]

Jiann-Sheng Jiang, Chi-Kun Lin, Chi-Hua Liu. Homogenization of the Maxwell's system for conducting media. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 91-107. doi: 10.3934/dcdsb.2008.10.91

[7]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[8]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

[9]

David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319

[10]

S. Bonafede, G. R. Cirmi, A.F. Tedeev. Finite speed of propagation for the porous media equation with lower order terms. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 305-314. doi: 10.3934/dcds.2000.6.305

[11]

Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 547-558. doi: 10.3934/dcdss.2009.2.547

[12]

Takayoshi Ogawa, Kento Seraku. Logarithmic Sobolev and Shannon's inequalities and an application to the uncertainty principle. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1651-1669. doi: 10.3934/cpaa.2018079

[13]

Alexander Veretennikov. On large deviations in the averaging principle for SDE's with a "full dependence,'' revisited. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 523-549. doi: 10.3934/dcdsb.2013.18.523

[14]

Anne-Sophie de Suzzoni. Consequences of the choice of a particular basis of $L^2(S^3)$ for the cubic wave equation on the sphere and the Euclidean space. Communications on Pure & Applied Analysis, 2014, 13 (3) : 991-1015. doi: 10.3934/cpaa.2014.13.991

[15]

Marcus A. Khuri. On the local solvability of Darboux's equation. Conference Publications, 2009, 2009 (Special) : 451-456. doi: 10.3934/proc.2009.2009.451

[16]

David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353

[17]

Alexander Moreto. Complex group algebras of finite groups: Brauer's Problem 1. Electronic Research Announcements, 2005, 11: 34-39.

[18]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[19]

Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058

[20]

Kevin Zumbrun. L resolvent bounds for steady Boltzmann's Equation. Kinetic & Related Models, 2017, 10 (4) : 1255-1257. doi: 10.3934/krm.2017048

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (49)
  • HTML views (400)
  • Cited by (0)

Other articles
by authors

[Back to Top]