August & September  2019, 12(4&5): 969-978. doi: 10.3934/dcdss.2019065

A pricing option approach based on backward stochastic differential equation theory

Information Academy of Renmin University of China, Beijing, China

* Corresponding author: Xiao-Qian Jiang

Received  August 2017 Revised  December 2017 Published  November 2018

In option pricing, backward stochastic differential equation (BSDE) has wide application and Black-Scholes model is one of the classic pricing model. However, the model needs many preconditions which causes the implementing environment of model to approach perfection, leading to large deviation in actual application. Therefore, this article study the optimization problem of option pricing model under limited conditions intensively. It means that when random volatility is given, the option pricing formula with random interest rate is proposed and corresponding revision is also provided. Then we adopt call option and put option of Standard Poor's 500 index options to perform empirical research. The results indicate the assumption of random volatility is closer to reality. Compared to tradition models, the approach proposed in this article has enough theoretical basis. It is proved to own simple modeling method and higher accuracy which also shows certain reference significance to option pricing.

Citation: Xiao-Qian Jiang, Lun-Chuan Zhang. A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-978. doi: 10.3934/dcdss.2019065
References:
[1]

L. Andersen and J. Andreasen, Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing, Review of Derivatives Research, 4 (2000), 231-262. Google Scholar

[2]

T. Björk and H. Hult, A note on Wick products and the fractional Black-Scholes model, Finance & Stochastics, 9 (2005), 197-209. doi: 10.1007/s00780-004-0144-5. Google Scholar

[3]

R. Carmona, F. Delarue and G. E. Espinosa, et al., Singular forward-backward stochastic differential equations and emissions derivatives, Annals of Applied Probability, 23 (2013), 1086–1128. doi: 10.1214/12-AAP865. Google Scholar

[4]

D. M. Chance and Ph. D. CFA, Option pricing: The black-scholes-merton model[m]// essays in derivatives: Risk-transfer tools and topics made easy, Second Edition, John Wiley & Sons, Inc., 27 (2011), 133-137. Google Scholar

[5]

F. ChenJ. Shen and H. Yu, A new spectral element method for pricing european options under the black choles and merton jump diffusion models, Journal of Scientific Computing, 52 (2012), 499-518. doi: 10.1007/s10915-011-9556-5. Google Scholar

[6]

S. DattaR. D'Mello and I. D. Mai, Executive compensation and internal capital market efficiency, Journal of Financial Intermediation, 18 (2009), 242-258. Google Scholar

[7]

J. D. Finnerty, Modifying the Black-Scholes-Merton model to calculate the cost of employee stock options, Journal of Applied Finance, 40 (2005), 2-32. Google Scholar

[8]

G. FrankeR. C. Stapleton and M. G. Subrahmanyam, When are Options Overpriced?: The Black-Scholes model and alternative characterisation of the pricing kernel, Social Science Electronic Publishing, 3 (1999), 79-102. Google Scholar

[9]

G. Gonz lez-RiveraT. H. Lee and S. Mishra, Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood, International Journal of Forecasting, 20 (2004), 629-645. Google Scholar

[10]

C. B. Hyndman and P. O. Ngou, A convolution method for numerical solution of backward stochastic differential equation, Methodology & Computing in Applied Probability, 19 (2017), 1-29. doi: 10.1007/s11009-015-9449-4. Google Scholar

[11]

M. Jackson, When a good standard development process fails, Interlending & Document Supply, 33 (2005), 53-55. Google Scholar

[12]

J. R. Liang, J. Wang and W. J. Zhang, et al., Option pricing of a bi-fractional Black erton choles model with the Hurst exponent, Applied Mathematics Letters, 23 (2010), 859–863. doi: 10.1016/j.aml.2010.03.022. Google Scholar

[13]

J. D. Macbeth and L. J. Merville An empirical examination of the black-scholes call option pricing model, An empirical examination of the black-scholes call option pricing model, Journal of Finance, 34 (1979), 1173-1186. Google Scholar

[14]

A. G. MalliarisR. W. Kolb and J. A. Overdahl, The black choles option pricing model, Social Science Electronic Publishing, 22 (2008), 247-263. Google Scholar

[15]

J. I. PeaG. Rubio and G. S. Serna, Bid-ask spread and option pricing, Social Science Electronic Publishing, 7 (2000), 351-374. Google Scholar

[16]

Y. Peng, B. Gong and H. Liu, et al. Parallel computing for option pricing based on the backward stochastic differential equation, Proceedings of High Performance Computing and Applications, Second International Conference, Shanghai, China, (2010), 325–330.Google Scholar

[17]

B. A. Shadwick and W. F. Shadwick, On the computation of option prices and sensitivities in the Black?Scholes?Merton model, Quantitative Finance, 2 (2002), 158-166. Google Scholar

[18]

J. Yong, Linear forward-backward stochastic differential equations, Applied Mathematics & Optimization, 39 (1999), 93-119. doi: 10.1007/s002459900100. Google Scholar

show all references

References:
[1]

L. Andersen and J. Andreasen, Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing, Review of Derivatives Research, 4 (2000), 231-262. Google Scholar

[2]

T. Björk and H. Hult, A note on Wick products and the fractional Black-Scholes model, Finance & Stochastics, 9 (2005), 197-209. doi: 10.1007/s00780-004-0144-5. Google Scholar

[3]

R. Carmona, F. Delarue and G. E. Espinosa, et al., Singular forward-backward stochastic differential equations and emissions derivatives, Annals of Applied Probability, 23 (2013), 1086–1128. doi: 10.1214/12-AAP865. Google Scholar

[4]

D. M. Chance and Ph. D. CFA, Option pricing: The black-scholes-merton model[m]// essays in derivatives: Risk-transfer tools and topics made easy, Second Edition, John Wiley & Sons, Inc., 27 (2011), 133-137. Google Scholar

[5]

F. ChenJ. Shen and H. Yu, A new spectral element method for pricing european options under the black choles and merton jump diffusion models, Journal of Scientific Computing, 52 (2012), 499-518. doi: 10.1007/s10915-011-9556-5. Google Scholar

[6]

S. DattaR. D'Mello and I. D. Mai, Executive compensation and internal capital market efficiency, Journal of Financial Intermediation, 18 (2009), 242-258. Google Scholar

[7]

J. D. Finnerty, Modifying the Black-Scholes-Merton model to calculate the cost of employee stock options, Journal of Applied Finance, 40 (2005), 2-32. Google Scholar

[8]

G. FrankeR. C. Stapleton and M. G. Subrahmanyam, When are Options Overpriced?: The Black-Scholes model and alternative characterisation of the pricing kernel, Social Science Electronic Publishing, 3 (1999), 79-102. Google Scholar

[9]

G. Gonz lez-RiveraT. H. Lee and S. Mishra, Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood, International Journal of Forecasting, 20 (2004), 629-645. Google Scholar

[10]

C. B. Hyndman and P. O. Ngou, A convolution method for numerical solution of backward stochastic differential equation, Methodology & Computing in Applied Probability, 19 (2017), 1-29. doi: 10.1007/s11009-015-9449-4. Google Scholar

[11]

M. Jackson, When a good standard development process fails, Interlending & Document Supply, 33 (2005), 53-55. Google Scholar

[12]

J. R. Liang, J. Wang and W. J. Zhang, et al., Option pricing of a bi-fractional Black erton choles model with the Hurst exponent, Applied Mathematics Letters, 23 (2010), 859–863. doi: 10.1016/j.aml.2010.03.022. Google Scholar

[13]

J. D. Macbeth and L. J. Merville An empirical examination of the black-scholes call option pricing model, An empirical examination of the black-scholes call option pricing model, Journal of Finance, 34 (1979), 1173-1186. Google Scholar

[14]

A. G. MalliarisR. W. Kolb and J. A. Overdahl, The black choles option pricing model, Social Science Electronic Publishing, 22 (2008), 247-263. Google Scholar

[15]

J. I. PeaG. Rubio and G. S. Serna, Bid-ask spread and option pricing, Social Science Electronic Publishing, 7 (2000), 351-374. Google Scholar

[16]

Y. Peng, B. Gong and H. Liu, et al. Parallel computing for option pricing based on the backward stochastic differential equation, Proceedings of High Performance Computing and Applications, Second International Conference, Shanghai, China, (2010), 325–330.Google Scholar

[17]

B. A. Shadwick and W. F. Shadwick, On the computation of option prices and sensitivities in the Black?Scholes?Merton model, Quantitative Finance, 2 (2002), 158-166. Google Scholar

[18]

J. Yong, Linear forward-backward stochastic differential equations, Applied Mathematics & Optimization, 39 (1999), 93-119. doi: 10.1007/s002459900100. Google Scholar

Figure 1.  Call option price regulation under different $\sigma $
Figure 2.  When considering uderlying transaction behavior of the option, S & P 500 index changes in the period from NOV 5th, 2013 to Nov 3rd, 2015
Figure 3.  Comparison of hidden volatility from BS and EBS
Table 1.  European call option price of three models
BSCBSEBS
$\sigma =$ 0.054.50626.17526.5952
$\sigma =$ 0.15.32837.85407.2335
$\sigma =$ 0.156.78938.33488.0334
$\sigma =$ 0.27.24399.45388.6571
$\sigma =$ 0.258.546610.653210.4295
$\sigma =$ 0.310.899112.529813.8195
$\sigma =$ 0.517.992321.040422.6319
BSCBSEBS
$\sigma =$ 0.054.50626.17526.5952
$\sigma =$ 0.15.32837.85407.2335
$\sigma =$ 0.156.78938.33488.0334
$\sigma =$ 0.27.24399.45388.6571
$\sigma =$ 0.258.546610.653210.4295
$\sigma =$ 0.310.899112.529813.8195
$\sigma =$ 0.517.992321.040422.6319
Table 2.  Theoretical price and risk index of three models
BS CBS EBS
Call option Put option Call option Put option Call option Put option
Theoretical price 7.1618 4.8643 7.9394 4.0217 8.4352 3.9280
Delta 0.4935 -0.4205 0.4857 -0.425668 0.466891 -0.42234
Gamma 0.01823 0.0191 0.01356 0.0165 0.009885 0.0098
Theta -0.007143 -0.00814 -0.0085201 -0.008536 -0.00972 -0.009755
Vaga 0.362788 0.361785 0.375942 0.378952 0.394567 0.394756
Rho -0.071415 -0.071415 -0.071415 -0.071415 -0.071415 -0.071415
BS CBS EBS
Call option Put option Call option Put option Call option Put option
Theoretical price 7.1618 4.8643 7.9394 4.0217 8.4352 3.9280
Delta 0.4935 -0.4205 0.4857 -0.425668 0.466891 -0.42234
Gamma 0.01823 0.0191 0.01356 0.0165 0.009885 0.0098
Theta -0.007143 -0.00814 -0.0085201 -0.008536 -0.00972 -0.009755
Vaga 0.362788 0.361785 0.375942 0.378952 0.394567 0.394756
Rho -0.071415 -0.071415 -0.071415 -0.071415 -0.071415 -0.071415
Table 3.  The significantly volatility reducing estimation of classical Black-Scholes and revised model
Classic BS model (%) EBS model with drift (%)
Max error over period 0.86 0.59
Avdrage error of each day 0.26 0.12
Average error of all prices 0.14 0.07
Std. Dev. Of error of each day 0.13 0.06
Std. Dev. Of error of all prices 0.11 0.06
Classic BS model (%) EBS model with drift (%)
Max error over period 0.86 0.59
Avdrage error of each day 0.26 0.12
Average error of all prices 0.14 0.07
Std. Dev. Of error of each day 0.13 0.06
Std. Dev. Of error of all prices 0.11 0.06
[1]

Cuilian You, Le Bo. Option pricing formulas for generalized fuzzy stock model. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-10. doi: 10.3934/jimo.2018158

[2]

Xinfu Chen, Huibin Cheng. Regularity of the free boundary for the American put option. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1751-1759. doi: 10.3934/dcdsb.2012.17.1751

[3]

Kais Hamza, Fima C. Klebaner. On nonexistence of non-constant volatility in the Black-Scholes formula. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 829-834. doi: 10.3934/dcdsb.2006.6.829

[4]

Lishang Jiang, Baojun Bian. The regularized implied local volatility equations -A new model to recover the volatility of underlying asset from observed market option price. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2017-2046. doi: 10.3934/dcdsb.2012.17.2017

[5]

Kai Zhang, Song Wang. Convergence property of an interior penalty approach to pricing American option. Journal of Industrial & Management Optimization, 2011, 7 (2) : 435-447. doi: 10.3934/jimo.2011.7.435

[6]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[7]

Tak Kuen Siu, Howell Tong, Hailiang Yang. Option pricing under threshold autoregressive models by threshold Esscher transform. Journal of Industrial & Management Optimization, 2006, 2 (2) : 177-197. doi: 10.3934/jimo.2006.2.177

[8]

Kai Zhang, Xiaoqi Yang, Kok Lay Teo. A power penalty approach to american option pricing with jump diffusion processes. Journal of Industrial & Management Optimization, 2008, 4 (4) : 783-799. doi: 10.3934/jimo.2008.4.783

[9]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control & Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

[10]

Yanming Ge, Ziwen Yin, Yifan Xu. Overbooking with transference option for flights. Journal of Industrial & Management Optimization, 2011, 7 (2) : 449-465. doi: 10.3934/jimo.2011.7.449

[11]

Erik Ekström, Johan Tysk. A boundary point lemma for Black-Scholes type operators. Communications on Pure & Applied Analysis, 2006, 5 (3) : 505-514. doi: 10.3934/cpaa.2006.5.505

[12]

Na Song, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. A real option approach for investment opportunity valuation. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1213-1235. doi: 10.3934/jimo.2016069

[13]

Na Song, Ximin Huang, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. Impact of reorder option in supply chain coordination. Journal of Industrial & Management Optimization, 2017, 13 (1) : 449-475. doi: 10.3934/jimo.2016026

[14]

Junkee Jeon, Jehan Oh. Valuation of American strangle option: Variational inequality approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 755-781. doi: 10.3934/dcdsb.2018206

[15]

Junkee Jeon, Jehan Oh. (1+2)-dimensional Black-Scholes equations with mixed boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (2) : 699-714. doi: 10.3934/cpaa.2020032

[16]

Ximin Huang, Na Song, Wai-Ki Ching, Tak-Kuen Siu, Ka-Fai Cedric Yiu. A real option approach to optimal inventory management of retail products. Journal of Industrial & Management Optimization, 2012, 8 (2) : 379-389. doi: 10.3934/jimo.2012.8.379

[17]

Xinfu Chen, Bei Hu, Jin Liang, Yajing Zhang. Convergence rate of free boundary of numerical scheme for American option. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1435-1444. doi: 10.3934/dcdsb.2016004

[18]

Xu Chen, Jianping Wan. Integro-differential equations for foreign currency option prices in exponential Lévy models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 529-537. doi: 10.3934/dcdsb.2007.8.529

[19]

Benyong Hu, Xu Chen, Felix T. S. Chan, Chao Meng. Portfolio procurement policies for budget-constrained supply chains with option contracts and external financing. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1105-1122. doi: 10.3934/jimo.2018001

[20]

Fazlollah Soleymani, Ali Akgül. European option valuation under the Bates PIDE in finance: A numerical implementation of the Gaussian scheme. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 889-909. doi: 10.3934/dcdss.2020052

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (30)
  • HTML views (251)
  • Cited by (0)

Other articles
by authors

[Back to Top]