# American Institute of Mathematical Sciences

• Previous Article
Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative
• DCDS-S Home
• This Issue
• Next Article
On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation
June  2019, 12(3): 487-502. doi: 10.3934/dcdss.2019032

## The first integral method for two fractional non-linear biological models

 1 Department of Physics, Adeyemi College of Education, Ondo, Nigeria 2 Department of Mathematics Education, University of Education, Winneba, (Kumasi campus), Ghana 3 Department of Physical Sciences, Al-Hikmah University, Ilorin, Nigeria

* Corresponding author: olusolakolebaje2008@gmail.com

Received  June 2017 Revised  November 2017 Published  September 2018

Travelling wave solutions of the space and time fractional models for non-linear blood flow in large vessels and Deoxyribonucleic acid (DNA) molecule dynamics defined in the sense of Jumarie's modified Riemann-Liouville derivative via the first integral method are presented in this study. A fractional complex transformation was applied to turn the fractional biological models into an equivalent integer order ordinary differential equation. The validity of the solutions to the fractional biological models obtained with first integral method was achieved by putting them back into the models. We observed that introducing fractional order to the biological models changes the nature of the solution.

Citation: Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032
##### References:

show all references

##### References:
Figure showing $P(z,t)$ with $\chi = z^{\sigma}/\Gamma(1+\sigma)+2 t^{\gamma}/\Gamma(1+\gamma)\sqrt{1-4 B_0^2}$ and $0\leq z, t \leq 20$ for (a) $\sigma = 1$ , $\gamma = 1$ , (b) $\sigma = 1$ , $\gamma = 0.5$ , (c) $\sigma = 0.5$ , $\gamma = 1$ , (d) $\sigma = 0.5$ , $\gamma = 0.5$
Figure showing $P(z,t)$ with $\chi = z^{\sigma}/\Gamma(1+\sigma)-2 t^{\gamma}/\Gamma(1+\gamma)\sqrt{1-4 B_0^2}$ and $0\leq z, t \leq 20$ for (a) $\sigma = 1$ , $\gamma = 1$ , (b) $\sigma = 1$ , $\gamma = 0.5$ , (c) $\sigma = 0.5$ , $\gamma = 1$ , (d) $\sigma = 0.5$ , $\gamma = 0.5$
Figure showing $\phi(x,t)$ (Eq. 65) with $B_0, l, k, Y, \lambda, \mu = 1$ , $h = 3.33$ , $\rho = 0.85$ , and $0\leq x, t \leq 5$ for (a) $\sigma = 1$ , $\gamma = 1$ , (b) $\sigma = 1$ , $\gamma = 0.5$ , (c) $\sigma = 0.5$ , $\gamma = 1$ , (d) $\sigma = 0.5$ , $\gamma = 0.5$
Figure showing $\phi(x,t)$ (Eq. 66) with $B_0, l, k, Y, \lambda, \mu = 1$ , $h = 3.33$ , $\rho = 0.85$ , and $0\leq x, t \leq 5$ for (a) $\sigma = 1$ , $\gamma = 1$ , (b) $\sigma = 1$ , $\gamma = 0.5$ , (c) $\sigma = 0.5$ , $\gamma = 1$ , (d) $\sigma = 0.5$ , $\gamma = 0.5$
Figure showing $\phi(x,t)$ (Eq. 78) with $B_0, l, k, Y, \lambda, \mu = 1$ , $h = 3.33$ , $\rho = 0.85$ , and $0\leq x, t \leq 5$ for (a) $\sigma = 1$ , $\gamma = 1$ , (b) $\sigma = 1$ , $\gamma = 0.5$ , (c) $\sigma = 0.5$ , $\gamma = 1$ , (d) $\sigma = 0.5$ , $\gamma = 0.5$
Figure showing $\phi(x,t)$ (Eq. 79) with $B_0, l, k, Y, \lambda, \mu = 1$ , $h = 3.33$ , $\rho = 0.85$ , and $0\leq x, t \leq 5$ for (a) $\sigma = 1$ , $\gamma = 1$ , (b) $\sigma = 1$ , $\gamma = 0.5$ , (c) $\sigma = 0.5$ , $\gamma = 1$ , (d) $\sigma = 0.5$ , $\gamma = 0.5$
 [1] A. Ducrot. Travelling wave solutions for a scalar age-structured equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 251-273. doi: 10.3934/dcdsb.2007.7.251 [2] Christopher K. R. T. Jones, Robert Marangell. The spectrum of travelling wave solutions to the Sine-Gordon equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 925-937. doi: 10.3934/dcdss.2012.5.925 [3] Arnaud Ducrot, Michel Langlais, Pierre Magal. Qualitative analysis and travelling wave solutions for the SI model with vertical transmission. Communications on Pure & Applied Analysis, 2012, 11 (1) : 97-113. doi: 10.3934/cpaa.2012.11.97 [4] Claude-Michael Brauner, Josephus Hulshof, J.-F. Ripoll. Existence of travelling wave solutions in a combustion-radiation model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 193-208. doi: 10.3934/dcdsb.2001.1.193 [5] Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks & Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625 [6] Jibin Li, Fengjuan Chen. Exact travelling wave solutions and their dynamical behavior for a class coupled nonlinear wave equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 163-172. doi: 10.3934/dcdsb.2013.18.163 [7] Jibin Li, Weigou Rui, Yao Long, Bin He. Travelling wave solutions for higher-order wave equations of KDV type (III). Mathematical Biosciences & Engineering, 2006, 3 (1) : 125-135. doi: 10.3934/mbe.2006.3.125 [8] Tong Li, Sunčica Čanić. Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks & Heterogeneous Media, 2009, 4 (3) : 527-536. doi: 10.3934/nhm.2009.4.527 [9] Tong Li, Kun Zhao. On a quasilinear hyperbolic system in blood flow modeling. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 333-344. doi: 10.3934/dcdsb.2011.16.333 [10] Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control & Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521 [11] Mudassar Imran, Youssef Raffoul, Muhammad Usman, Chi Zhang. A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 691-705. doi: 10.3934/dcdss.2018043 [12] Min Li, Zhaoyang Yin. Blow-up phenomena and travelling wave solutions to the periodic integrable dispersive Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6471-6485. doi: 10.3934/dcds.2017280 [13] Jibin Li. Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1719-1729. doi: 10.3934/dcdsb.2014.19.1719 [14] Chueh-Hsin Chang, Chiun-Chuan Chen. Travelling wave solutions of a free boundary problem for a two-species competitive model. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1065-1074. doi: 10.3934/cpaa.2013.12.1065 [15] Borys Alvarez-Samaniego, Pascal Azerad. Existence of travelling-wave solutions and local well-posedness of the Fowler equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 671-692. doi: 10.3934/dcdsb.2009.12.671 [16] Tiberiu Harko, Man Kwong Mak. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences & Engineering, 2015, 12 (1) : 41-69. doi: 10.3934/mbe.2015.12.41 [17] Chiun-Chuan Chen, Li-Chang Hung, Masayasu Mimura, Daishin Ueyama. Exact travelling wave solutions of three-species competition--diffusion systems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2653-2669. doi: 10.3934/dcdsb.2012.17.2653 [18] Wei Wang, Wanbiao Ma. Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3213-3235. doi: 10.3934/dcdsb.2018242 [19] Martin Bauer, Martins Bruveris, Philipp Harms, Peter W. Michor. Soliton solutions for the elastic metric on spaces of curves. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1161-1185. doi: 10.3934/dcds.2018049 [20] Bendong Lou. Traveling wave solutions of a generalized curvature flow equation in the plane. Conference Publications, 2007, 2007 (Special) : 687-693. doi: 10.3934/proc.2007.2007.687

2018 Impact Factor: 0.545