April  2019, 12(2): 347-374. doi: 10.3934/dcdss.2019024

Multiple solutions for (p, 2)-equations at resonance

1. 

Department of Mathematics, National Technical University, Zagrafou Campus, Athens, 15780, Greece

2. 

Department of Mathematics and Computer Science, University of Palermo, Via Archirafi 34, 90123 Palermo, Italy

3. 

Department of Energy, Information Engineering and Mathematical Models, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy

* Corresponding author: Nikolaos Papageorgiou

Dedicated to Professor Vicentiu D. Radulescu with friendship and admiration.

Received  April 2017 Revised  December 2017 Published  August 2018

We consider a nonlinear nonhomogeneous Dirichlet problem driven by the sum of a $p$-Laplacian and a Laplacian and a reaction term which is $(p-1)$-linear near $\pm \infty$ and resonant with respect to any nonprincipal variational eigenvalue of $(-\Delta_p,W^{1,p}_0(\Omega))$. Using variational tools together with truncation and comparison techniques and Morse Theory (critical groups), we establish the existence of six nontrivial smooth solutions. For five of them we provide sign information and order them.

Citation: Nikolaos S. Papageorgiou, Calogero Vetro, Francesca Vetro. Multiple solutions for (p, 2)-equations at resonance. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 347-374. doi: 10.3934/dcdss.2019024
References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc., 196 (2008), ⅵ+70 pp. doi: 10.1090/memo/0915. Google Scholar

[2]

S. AizicoviciN. S. Papageorgiou and V. Staicu, On p-superlinear equations with a nonhomogeneous differential operator, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 151-175. doi: 10.1007/s00030-012-0187-9. Google Scholar

[3]

S. AizicoviciN. S. Papageorgiou and V. Staicu, Nodal solutions for (p, 2)-equations, Trans. Amer. Math. Soc., 367 (2015), 7343-7372. doi: 10.1090/S0002-9947-2014-06324-1. Google Scholar

[4]

R. Aris, Mathematical Modelling Techniques, Research Notes in Mathematics, 24. Pitman Boston, 1979. Google Scholar

[5]

V. BenciP. D'AveniaD. Fortunato and L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal., 154 (2000), 297-324. doi: 10.1007/s002050000101. Google Scholar

[6]

K.-C. Chang, Infinite-dimensional Morse Theory and Multiple Solution Problems, Progress in Nonlinear Differential Equations and their Applications, 6. Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0385-8. Google Scholar

[7]

K.-C. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005. Google Scholar

[8]

L. Cherfils and Y. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with p & q-Laplacian, Commun. Pure Appl. Anal., 4 (2005), 9-22. Google Scholar

[9]

S. Cingolani and M. Degiovanni, Nontrivial solutions for p-Laplace equations with right-hand side having p-linear growth at infinity, Comm. Partial Differential Equations, 30 (2005), 1191-1203. doi: 10.1080/03605300500257594. Google Scholar

[10]

J. I. Díaz and J. E. Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 521-524. Google Scholar

[11]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics, 28. Springer-Verlag, Berlin, 1979. Google Scholar

[12]

D. G. De Figueiredo and J.-P. Gossez, Strict monotonicity of eigenvalues and unique continuation, Comm. Partial Differential Equations, 17 (1992), 339-346. doi: 10.1080/03605309208820844. Google Scholar

[13]

M. E. Filippakis and N. S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian, J. Differential Equations, 245 (2008), 1883-1922. doi: 10.1016/j.jde.2008.07.004. Google Scholar

[14]

L. Gasiński and N. S. Papageorgiou, Nonlinear Analysis, Ser. Math. Anal. Appl., 9 Chapman and Hall/CRC Press, Boca Raton, 2006. Google Scholar

[15]

L. Gasiński and N. S. Papageorgiou, Multiplicity of positive solutions for eigenvalue problems of (p, 2)-equations, Bound. Value Probl., 2012 (2012), 17 pp. doi: 10.1186/1687-2770-2012-152. Google Scholar

[16]

L. Gasiński and N. S. Papageorgiou, Asymmetric (p, 2)-equations with double resonance, Calc. Var., 56 (2017), Art. 88, 23 pp. doi: 10.1007/s00526-017-1180-2. Google Scholar

[17]

L. Gasiński and N. S. Papageorgiou, Exercises in Analysis. Part 2. Nonlinear Analysis, Problem Books in Mathematics. Springer, Cham, 2016. doi: 10.1007/978-3-319-27817-9. Google Scholar

[18]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I. Theory, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997. doi: 10.1007/978-1-4615-6359-4. Google Scholar

[19]

O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. Google Scholar

[20]

Z. Liang, X. Han and A. Li, Some properties and applications related to the (2, p)-Laplacian operator, Bound. Value Probl., 2016 (2016), 17 pp. doi: 10.1186/s13661-016-0567-x. Google Scholar

[21]

Z. Liang and J. Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance, J. Math. Anal. Appl., 354 (2009), 147-158. doi: 10.1016/j.jmaa.2008.12.053. Google Scholar

[22]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219. doi: 10.1016/0362-546X(88)90053-3. Google Scholar

[23]

S. A. Marano and N. S. Papageorgiou, Positive solutions to a Dirichlet problem with p-Laplacian and concave-convex nonlinearity depending on a parameter, Commun. Pure Appl. Anal., 12 (2013), 815-829. doi: 10.3934/cpaa.2013.12.815. Google Scholar

[24]

M. Montenegro, Strong maximum principles for supersolutions of quasilinear elliptic equations, Nonlinear Anal., 37 (1999), 431-448. doi: 10.1016/S0362-546X(98)00057-1. Google Scholar

[25]

D. Motreanu, V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014. doi: 10.1007/978-1-4614-9323-5. Google Scholar

[26]

R. S. Palais, Homotopy theory of infinite dimensional manifolds, Topology, 5 (1966), 1-16. doi: 10.1016/0040-9383(66)90002-4. Google Scholar

[27]

N. S. Papageorgiou and V. D. Rǎdulescu, Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance, Appl. Math. Optim., 69 (2014), 393-430. doi: 10.1007/s00245-013-9227-z. Google Scholar

[28]

N. S. Papageorgiou and V. D. Rǎdulescu, Resonant (p, 2)-equations with asymmetric reaction, Anal. Appl., 13 (2015), 481-506. doi: 10.1142/S0219530514500134. Google Scholar

[29]

N. S. Papageorgiou and V. D. Rǎdulescu, Noncoercive resonant (p, 2)-equations, Appl. Math. Optim., 76 (2017), 621-639. doi: 10.1007/s00245-016-9363-3. Google Scholar

[30]

N. S. Papageorgiou and V. D. Rǎdulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479. doi: 10.1016/j.jde.2014.01.010. Google Scholar

[31]

N. S. Papageorgiou and V. D. Rǎdulescu, Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear. Stud., 16 (2016), 737-764. doi: 10.1515/ans-2016-0023. Google Scholar

[32]

N. S. PapageorgiouV. D. Rǎdulescu and D. D. Repovš, On a class of parametric (p, 2)-equations, Appl. Math. Optim., 75 (2017), 193-228. doi: 10.1007/s00245-016-9330-z. Google Scholar

[33]

R. Pei and J. Zhang, Nontrivial solution for asymmetric (p, 2)-Laplacian Dirichlet problem, Bound. Value Probl., 2014 (2014), 15 pp. doi: 10.1186/s13661-014-0241-0. Google Scholar

[34]

P. Pucci and J. Serrin, The Mximum Principle, Birkhäuser Verlag, Basel, 2007. Google Scholar

[35]

J. Su, Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues, Nonlinear Anal., 48 (2002), 881-895. doi: 10.1016/S0362-546X(00)00221-2. Google Scholar

[36]

M. Sun, Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance, J. Math. Anal. Appl., 386 (2012), 661-668. doi: 10.1016/j.jmaa.2011.08.030. Google Scholar

[37]

M. SunM. Zhang and J. Su, Critical groups at zero and multiple solutions for a quasilinear elliptic equation, J. Math. Anal. Appl., 428 (2015), 696-712. doi: 10.1016/j.jmaa.2015.03.033. Google Scholar

[38]

D. Yang and C. Bai, Nonlinear elliptic problem of 2-q-Laplacian type with asymmetric nonlinearities, Electron. J. Differential Equations, 2014 (2014), 13 pp. Google Scholar

show all references

References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc., 196 (2008), ⅵ+70 pp. doi: 10.1090/memo/0915. Google Scholar

[2]

S. AizicoviciN. S. Papageorgiou and V. Staicu, On p-superlinear equations with a nonhomogeneous differential operator, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 151-175. doi: 10.1007/s00030-012-0187-9. Google Scholar

[3]

S. AizicoviciN. S. Papageorgiou and V. Staicu, Nodal solutions for (p, 2)-equations, Trans. Amer. Math. Soc., 367 (2015), 7343-7372. doi: 10.1090/S0002-9947-2014-06324-1. Google Scholar

[4]

R. Aris, Mathematical Modelling Techniques, Research Notes in Mathematics, 24. Pitman Boston, 1979. Google Scholar

[5]

V. BenciP. D'AveniaD. Fortunato and L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal., 154 (2000), 297-324. doi: 10.1007/s002050000101. Google Scholar

[6]

K.-C. Chang, Infinite-dimensional Morse Theory and Multiple Solution Problems, Progress in Nonlinear Differential Equations and their Applications, 6. Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0385-8. Google Scholar

[7]

K.-C. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005. Google Scholar

[8]

L. Cherfils and Y. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with p & q-Laplacian, Commun. Pure Appl. Anal., 4 (2005), 9-22. Google Scholar

[9]

S. Cingolani and M. Degiovanni, Nontrivial solutions for p-Laplace equations with right-hand side having p-linear growth at infinity, Comm. Partial Differential Equations, 30 (2005), 1191-1203. doi: 10.1080/03605300500257594. Google Scholar

[10]

J. I. Díaz and J. E. Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 521-524. Google Scholar

[11]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics, 28. Springer-Verlag, Berlin, 1979. Google Scholar

[12]

D. G. De Figueiredo and J.-P. Gossez, Strict monotonicity of eigenvalues and unique continuation, Comm. Partial Differential Equations, 17 (1992), 339-346. doi: 10.1080/03605309208820844. Google Scholar

[13]

M. E. Filippakis and N. S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian, J. Differential Equations, 245 (2008), 1883-1922. doi: 10.1016/j.jde.2008.07.004. Google Scholar

[14]

L. Gasiński and N. S. Papageorgiou, Nonlinear Analysis, Ser. Math. Anal. Appl., 9 Chapman and Hall/CRC Press, Boca Raton, 2006. Google Scholar

[15]

L. Gasiński and N. S. Papageorgiou, Multiplicity of positive solutions for eigenvalue problems of (p, 2)-equations, Bound. Value Probl., 2012 (2012), 17 pp. doi: 10.1186/1687-2770-2012-152. Google Scholar

[16]

L. Gasiński and N. S. Papageorgiou, Asymmetric (p, 2)-equations with double resonance, Calc. Var., 56 (2017), Art. 88, 23 pp. doi: 10.1007/s00526-017-1180-2. Google Scholar

[17]

L. Gasiński and N. S. Papageorgiou, Exercises in Analysis. Part 2. Nonlinear Analysis, Problem Books in Mathematics. Springer, Cham, 2016. doi: 10.1007/978-3-319-27817-9. Google Scholar

[18]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I. Theory, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997. doi: 10.1007/978-1-4615-6359-4. Google Scholar

[19]

O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. Google Scholar

[20]

Z. Liang, X. Han and A. Li, Some properties and applications related to the (2, p)-Laplacian operator, Bound. Value Probl., 2016 (2016), 17 pp. doi: 10.1186/s13661-016-0567-x. Google Scholar

[21]

Z. Liang and J. Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance, J. Math. Anal. Appl., 354 (2009), 147-158. doi: 10.1016/j.jmaa.2008.12.053. Google Scholar

[22]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219. doi: 10.1016/0362-546X(88)90053-3. Google Scholar

[23]

S. A. Marano and N. S. Papageorgiou, Positive solutions to a Dirichlet problem with p-Laplacian and concave-convex nonlinearity depending on a parameter, Commun. Pure Appl. Anal., 12 (2013), 815-829. doi: 10.3934/cpaa.2013.12.815. Google Scholar

[24]

M. Montenegro, Strong maximum principles for supersolutions of quasilinear elliptic equations, Nonlinear Anal., 37 (1999), 431-448. doi: 10.1016/S0362-546X(98)00057-1. Google Scholar

[25]

D. Motreanu, V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014. doi: 10.1007/978-1-4614-9323-5. Google Scholar

[26]

R. S. Palais, Homotopy theory of infinite dimensional manifolds, Topology, 5 (1966), 1-16. doi: 10.1016/0040-9383(66)90002-4. Google Scholar

[27]

N. S. Papageorgiou and V. D. Rǎdulescu, Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance, Appl. Math. Optim., 69 (2014), 393-430. doi: 10.1007/s00245-013-9227-z. Google Scholar

[28]

N. S. Papageorgiou and V. D. Rǎdulescu, Resonant (p, 2)-equations with asymmetric reaction, Anal. Appl., 13 (2015), 481-506. doi: 10.1142/S0219530514500134. Google Scholar

[29]

N. S. Papageorgiou and V. D. Rǎdulescu, Noncoercive resonant (p, 2)-equations, Appl. Math. Optim., 76 (2017), 621-639. doi: 10.1007/s00245-016-9363-3. Google Scholar

[30]

N. S. Papageorgiou and V. D. Rǎdulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479. doi: 10.1016/j.jde.2014.01.010. Google Scholar

[31]

N. S. Papageorgiou and V. D. Rǎdulescu, Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear. Stud., 16 (2016), 737-764. doi: 10.1515/ans-2016-0023. Google Scholar

[32]

N. S. PapageorgiouV. D. Rǎdulescu and D. D. Repovš, On a class of parametric (p, 2)-equations, Appl. Math. Optim., 75 (2017), 193-228. doi: 10.1007/s00245-016-9330-z. Google Scholar

[33]

R. Pei and J. Zhang, Nontrivial solution for asymmetric (p, 2)-Laplacian Dirichlet problem, Bound. Value Probl., 2014 (2014), 15 pp. doi: 10.1186/s13661-014-0241-0. Google Scholar

[34]

P. Pucci and J. Serrin, The Mximum Principle, Birkhäuser Verlag, Basel, 2007. Google Scholar

[35]

J. Su, Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues, Nonlinear Anal., 48 (2002), 881-895. doi: 10.1016/S0362-546X(00)00221-2. Google Scholar

[36]

M. Sun, Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance, J. Math. Anal. Appl., 386 (2012), 661-668. doi: 10.1016/j.jmaa.2011.08.030. Google Scholar

[37]

M. SunM. Zhang and J. Su, Critical groups at zero and multiple solutions for a quasilinear elliptic equation, J. Math. Anal. Appl., 428 (2015), 696-712. doi: 10.1016/j.jmaa.2015.03.033. Google Scholar

[38]

D. Yang and C. Bai, Nonlinear elliptic problem of 2-q-Laplacian type with asymmetric nonlinearities, Electron. J. Differential Equations, 2014 (2014), 13 pp. Google Scholar

[1]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[2]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[3]

Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921

[4]

Maria Francesca Betta, Rosaria Di Nardo, Anna Mercaldo, Adamaria Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (3) : 897-922. doi: 10.3934/cpaa.2015.14.897

[5]

Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure & Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883

[6]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6133-6166. doi: 10.3934/dcds.2016068

[7]

Zuji Guo. Nodal solutions for nonlinear Schrödinger equations with decaying potential. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1125-1138. doi: 10.3934/cpaa.2016.15.1125

[8]

Shuhong Chen, Zhong Tan. Optimal partial regularity results for nonlinear elliptic systems in Carnot groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3391-3405. doi: 10.3934/dcds.2013.33.3391

[9]

M. Ben Ayed, Kamal Ould Bouh. Nonexistence results of sign-changing solutions to a supercritical nonlinear problem. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1057-1075. doi: 10.3934/cpaa.2008.7.1057

[10]

Yohei Sato, Zhi-Qiang Wang. On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2151-2164. doi: 10.3934/dcds.2015.35.2151

[11]

Vladimir Lubyshev. Precise range of the existence of positive solutions of a nonlinear, indefinite in sign Neumann problem. Communications on Pure & Applied Analysis, 2009, 8 (3) : 999-1018. doi: 10.3934/cpaa.2009.8.999

[12]

A. El Hamidi. Multiple solutions with changing sign energy to a nonlinear elliptic equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 253-265. doi: 10.3934/cpaa.2004.3.253

[13]

Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335

[14]

Jeffrey R. L. Webb. Positive solutions of nonlinear equations via comparison with linear operators. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5507-5519. doi: 10.3934/dcds.2013.33.5507

[15]

Uwe Schäfer, Marco Schnurr. A comparison of simple tests for accuracy of approximate solutions to nonlinear systems with uncertain data. Journal of Industrial & Management Optimization, 2006, 2 (4) : 425-434. doi: 10.3934/jimo.2006.2.425

[16]

Sergiu Aizicovici, Nikolaos S. Papageorgiou, Vasile Staicu. Nonlinear Dirichlet problems with double resonance. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1147-1168. doi: 10.3934/cpaa.2017056

[17]

Huseyin Coskun. Nonlinear decomposition principle and fundamental matrix solutions for dynamic compartmental systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-53. doi: 10.3934/dcdsb.2019155

[18]

Geng Chen, Yannan Shen. Existence and regularity of solutions in nonlinear wave equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3327-3342. doi: 10.3934/dcds.2015.35.3327

[19]

Necdet Bildik, Sinan Deniz. New approximate solutions to the nonlinear Klein-Gordon equations using perturbation iteration techniques. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 503-518. doi: 10.3934/dcdss.2020028

[20]

Nassif Ghoussoub. A variational principle for nonlinear transport equations. Communications on Pure & Applied Analysis, 2005, 4 (4) : 735-742. doi: 10.3934/cpaa.2005.4.735

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (59)
  • HTML views (86)
  • Cited by (0)

[Back to Top]