April  2019, 12(2): 339-345. doi: 10.3934/dcdss.2019023

Regularity of extremal solutions of a Liouville system

LAMFA, UMR CNRS 7352, Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex, France

Received  May 2017 Revised  December 2017 Published  August 2018

Let
$Ω\subset\mathbb{R}^n$
be a bounded smooth open set. We prove that the extremal solution of the system
$\begin{equation*}-Δ u = μ e^{θ u +(1-θ)v} , ~~~- Δ v = λ e^{θ v + (1-θ)u}~~~\mbox{ in }Ω,\end{equation*}$
with
$u = v = 0$
on
$\partial Ω$
,
$θ$
in
$[0,1]$
and
$μ,λ≥0$
are smooth if
$n≤ 9$
.
Citation: Olivier Goubet. Regularity of extremal solutions of a Liouville system. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 339-345. doi: 10.3934/dcdss.2019023
References:
[1]

C. Cowan, Regularity of the extremal solutions in a Gelfand system problem, Adv. Nonlinear Stud., 11 (2011), 695-700. doi: 10.1515/ans-2011-0310. Google Scholar

[2]

C. Cowan and N. Ghoussoub, Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains, Calc. Var. and PDEs, 49 (2014), 291-305. doi: 10.1007/s00526-012-0582-4. Google Scholar

[3]

M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal., 58 (1975), 207-218. doi: 10.1007/BF00280741. Google Scholar

[4]

J. DávilaL. Dupaigne and A. Farina, Partial regularity of finite Morse index solutions to the Lane-Emden equation, J. Funct. Anal., 261 (2011), 218-232. doi: 10.1016/j.jfa.2010.12.028. Google Scholar

[5]

J. Dávila and O. Goubet, Partial regularity for a Liouville system, Discrete Contin. Dyn. Syst., 34 (2014), 2495-2503. doi: 10.3934/dcds.2014.34.2495. Google Scholar

[6]

L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 143, Chapman & Hall/CRC, Boca Raton, FL, 2011. doi: 10.1201/b10802. Google Scholar

[7]

L. Dupaigne, A. Farina and B. Sirakov, Regularity of the extremal solution for the Liouville system, Geometric Partial Differential Equations, 139-144, CRM Series, 15, Ed. Norm., Pisa, 2013. arXiv: 1207.3703. doi: 10.1007/978-88-7642-473-1_7. Google Scholar

[8]

L. DupaigneM. GherguO. Goubet and G. Warnault, The Gel'fand for the biharmonic operator, Arch. Ration. Mech. Anal., 208 (2013), 725-752. doi: 10.1007/s00205-013-0613-0. Google Scholar

[9]

A. Farina, On the classification of solutions of the solutions of Lane-Emden equations on unbounded domains of $\mathbb{R}^n$, J. Math. Pures et Appliquées, 87 (2007), 537-561. doi: 10.1016/j.matpur.2007.03.001. Google Scholar

[10]

F. Mignot and J.-P. Puel, Sur une classe de problèmes non linéaires avec non linéairité positive, croissante, convexe, Comm. Partial Differential Equations, 5 (1980), 791-836. doi: 10.1080/03605308008820155. Google Scholar

[11]

M. Montenegro, Minimal solutions for a class of elliptic systems, Bull. London Math. Soc., 37 (2005), 405-416. doi: 10.1112/S0024609305004248. Google Scholar

[12]

K. Wang, Partial regularity of stable solutions to the supercritical equations and its applications, Nonlinear Anal., 75 (2012), 5238-5260. doi: 10.1016/j.na.2012.04.041. Google Scholar

show all references

References:
[1]

C. Cowan, Regularity of the extremal solutions in a Gelfand system problem, Adv. Nonlinear Stud., 11 (2011), 695-700. doi: 10.1515/ans-2011-0310. Google Scholar

[2]

C. Cowan and N. Ghoussoub, Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains, Calc. Var. and PDEs, 49 (2014), 291-305. doi: 10.1007/s00526-012-0582-4. Google Scholar

[3]

M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal., 58 (1975), 207-218. doi: 10.1007/BF00280741. Google Scholar

[4]

J. DávilaL. Dupaigne and A. Farina, Partial regularity of finite Morse index solutions to the Lane-Emden equation, J. Funct. Anal., 261 (2011), 218-232. doi: 10.1016/j.jfa.2010.12.028. Google Scholar

[5]

J. Dávila and O. Goubet, Partial regularity for a Liouville system, Discrete Contin. Dyn. Syst., 34 (2014), 2495-2503. doi: 10.3934/dcds.2014.34.2495. Google Scholar

[6]

L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 143, Chapman & Hall/CRC, Boca Raton, FL, 2011. doi: 10.1201/b10802. Google Scholar

[7]

L. Dupaigne, A. Farina and B. Sirakov, Regularity of the extremal solution for the Liouville system, Geometric Partial Differential Equations, 139-144, CRM Series, 15, Ed. Norm., Pisa, 2013. arXiv: 1207.3703. doi: 10.1007/978-88-7642-473-1_7. Google Scholar

[8]

L. DupaigneM. GherguO. Goubet and G. Warnault, The Gel'fand for the biharmonic operator, Arch. Ration. Mech. Anal., 208 (2013), 725-752. doi: 10.1007/s00205-013-0613-0. Google Scholar

[9]

A. Farina, On the classification of solutions of the solutions of Lane-Emden equations on unbounded domains of $\mathbb{R}^n$, J. Math. Pures et Appliquées, 87 (2007), 537-561. doi: 10.1016/j.matpur.2007.03.001. Google Scholar

[10]

F. Mignot and J.-P. Puel, Sur une classe de problèmes non linéaires avec non linéairité positive, croissante, convexe, Comm. Partial Differential Equations, 5 (1980), 791-836. doi: 10.1080/03605308008820155. Google Scholar

[11]

M. Montenegro, Minimal solutions for a class of elliptic systems, Bull. London Math. Soc., 37 (2005), 405-416. doi: 10.1112/S0024609305004248. Google Scholar

[12]

K. Wang, Partial regularity of stable solutions to the supercritical equations and its applications, Nonlinear Anal., 75 (2012), 5238-5260. doi: 10.1016/j.na.2012.04.041. Google Scholar

[1]

Juan Dávila, Olivier Goubet. Partial regularity for a Liouville system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2495-2503. doi: 10.3934/dcds.2014.34.2495

[2]

Guillaume Warnault. Regularity of the extremal solution for a biharmonic problem with general nonlinearity. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1709-1723. doi: 10.3934/cpaa.2009.8.1709

[3]

Zongming Guo, Juncheng Wei. Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2561-2580. doi: 10.3934/dcds.2014.34.2561

[4]

Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227

[5]

Juan Dávila, Louis Dupaigne, Marcelo Montenegro. The extremal solution of a boundary reaction problem. Communications on Pure & Applied Analysis, 2008, 7 (4) : 795-817. doi: 10.3934/cpaa.2008.7.795

[6]

H. M. Yin. Optimal regularity of solution to a degenerate elliptic system arising in electromagnetic fields. Communications on Pure & Applied Analysis, 2002, 1 (1) : 127-134. doi: 10.3934/cpaa.2002.1.127

[7]

Futoshi Takahashi. Singular extremal solutions to a Liouville-Gelfand type problem with exponential nonlinearity. Conference Publications, 2015, 2015 (special) : 1025-1033. doi: 10.3934/proc.2015.1025

[8]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[9]

Craig Cowan, Pierpaolo Esposito, Nassif Ghoussoub. Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1033-1050. doi: 10.3934/dcds.2010.28.1033

[10]

Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial & Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591

[11]

Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2637-2659. doi: 10.3934/dcds.2019110

[12]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[13]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[14]

Quoc Hung Phan. Optimal Liouville-type theorems for a parabolic system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 399-409. doi: 10.3934/dcds.2015.35.399

[15]

Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155

[16]

Xian-gao Liu, Xiaotao Zhang. Liouville theorem for MHD system and its applications. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2329-2350. doi: 10.3934/cpaa.2018111

[17]

Ze Cheng, Genggeng Huang. A Liouville theorem for the subcritical Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1359-1377. doi: 10.3934/dcds.2019058

[18]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[19]

Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873

[20]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (41)
  • HTML views (42)
  • Cited by (0)

Other articles
by authors

[Back to Top]