October  2017, 10(5): 1133-1148. doi: 10.3934/dcdss.2017061

Lyapunov-type inequalities and solvability of second-order ODEs across multi-resonance

a. 

College of Mathematics, Jilin University, Changchun 130012, China

b. 

School of Mathematics and Statistics and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, China

c. 

State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130012, China

* Corresponding author: zhanghe14@mails.jlu.edu.cn

Received  October 2016 Revised  November 2016 Published  June 2017

Fund Project: This work was completed with the support by National Basic Research Program of China Grant 2013CB834100, NSFC Grant 11571065, NSFC Grant 11171132 and NSFC Grant 11201173

We present some new Lyapunov-type inequalities for boundary value problems of the form $y''+u(x)y=0$, $y(0)=0=y(1)$, where $-A≤ u(x)≤ B$ and there are many resonance points lying inside the interval $[-A, B]$. The classical Lyapunov's inequality and its reverse are improved by using Pontryagin's maximum principle. As applications, we establish two readily verifiable unique solvability criteria for general $u(x)$. Some relevant examples are given to illustrate our results. Variants of Lyapunov-type inequalities for nonlinear BVPs are discussed at the end of the paper.

Citation: He Zhang, Xue Yang, Yong Li. Lyapunov-type inequalities and solvability of second-order ODEs across multi-resonance. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1133-1148. doi: 10.3934/dcdss.2017061
References:
[1] S. R. Bernfeld and V. Lakshmikantham, An Introduction to Nonlinear Boundary Value Problems, Elsevier, 1974. Google Scholar
[2]

G. Borg, On a liapounoff criterion of stability, American Journal of Mathematics, 71 (1949), 67-70. doi: 10.2307/2372093. Google Scholar

[3]

A. CañadaJ. A. Montero and S. Villegas, Lyapunov-type inequalities and neumann boundary value problems at resonance, Math. Inequal. Appl., 8 (2005), 459-475. doi: 10.7153/mia-08-42. Google Scholar

[4]

A. CañadaJ. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, Journal of Functional Analysis, 237 (2006), 176-193. doi: 10.1016/j.jfa.2005.12.011. Google Scholar

[5]

A. CañadaJ. A. Montero and S. Villegas, Lyapunov-type inequalities for differential equations, Mediterranean Journal of Mathematics, 3 (2006), 177-187. doi: 10.1007/s00009-006-0071-0. Google Scholar

[6]

A. Cañada and S. Villegas, Optimal lyapunov inequalities for disfocality and neumann boundary conditions using lp norms, Discrete Contin. Dyn. Syst. Ser. A, 20 (2008), 877-888. doi: 10.3934/dcds.2008.20.877. Google Scholar

[7]

A. Cañada and S. Villegas, Lyapunov inequalities for neumann boundary conditions at higher eigenvalues, J. Eur. Math. Soc. (JEMS), 12 (2010), 163-178. doi: 10.4171/JEMS/193. Google Scholar

[8]

A. Cañada and S. Villegas, Lyapunov inequalities for partial differential equations at radial higher eigenvalues, Discrete Contin. Dyn. Syst., 33 (2013), 111-122. doi: 10.3934/dcds.2013.33.111. Google Scholar

[9]

X. Chang and Q. Huang, Two-point boundary value problems for duffing equations across resonance, Journal of optimization theory and applications, 140 (2009), 419-430. doi: 10.1007/s10957-008-9461-8. Google Scholar

[10]

S.-S. Cheng, Lyapunov inequalities for differential and difference equations, Fasc. Math, 23 (1991), 25-41. Google Scholar

[11]

S. B. Eliason, A lyapunov inequality for a certain second order non-linear differential equation, Journal of the London Mathematical Society, 2 (1970), 461-466. doi: 10.1112/jlms/2.Part_3.461. Google Scholar

[12]

B. Harris and Q. Kong, On the oscillation of differential equations with an oscillatory coefficient, Transactions of the American Mathematical Society, 347 (1995), 1831-1839. doi: 10.1090/S0002-9947-1995-1283552-4. Google Scholar

[13] P. Hartman, Ordinary Differential Equations, Birkhauser, Boston, 1982. Google Scholar
[14]

J. Henderson, Best interval lengths for boundary value problems for third order lipschitz equations, SIAM journal on mathematical analysis, 18 (1987), 293-305. doi: 10.1137/0518023. Google Scholar

[15]

J. Henderson, Optimal interval lengths for nonlocal boundary value problems for second order lipschitz equations, Communications in Applied Analysis, 15 (2011), 475-482. Google Scholar

[16]

M. Grigor'evich Krein, On certain problems on the maximum and minimum of characteristic values and on the lyapunov zones of stability, Amer. Math. Soc. Transl., 1 (1955), 163-187. doi: 10.1090/trans2/001/08. Google Scholar

[17]

M. Lees, Discrete methods for nonlinear two-point boundary value problems, Numerical Solution of Partial Differential Equations, 1 (1966), 59-72. Google Scholar

[18]

Y. Li and H. Wang, Neumann problems for second order ordinary differential equations across resonance, Zeitschrift für angewandte Mathematik und Physik ZAMP, 46 (1995), 393-406. doi: 10.1007/BF01003558. Google Scholar

[19]

A. Liapounoff, Problème général de la stabilité du mouvement, In Annales de la faculté des sciences de Toulouse, 9 (1907), 203-474. Université Paul Sabatier. Google Scholar

[20]

G. López and J.-A. Montero-Sánchez, Neumann boundary value problems across resonance, ESAIM: Control, Optimisation and Calculus of Variations, 12 (2006), 398-408. doi: 10.1051/cocv:2006009. Google Scholar

[21]

J. Mawhin and J. Ward, Nonresonance and existence for nonlinear elliptic boundary value problems, Nonlinear Analysis: Theory, Methods & Applications, 5 (1981), 677-684. doi: 10.1016/0362-546X(81)90084-5. Google Scholar

[22]

J. P. Pinasco, Lower bounds for eigenvalues of the one-dimensional p-laplacian, In Abstract and Applied Analysis, Hindawi Publishing Corporation, 2004,147-153. doi: 10.1155/S108533750431002X. Google Scholar

[23]

J. Qi and S. Chen, Extremal norms of the potentials recovered from inverse dirichlet problems, Inverse Problems, 32 (2016), 035007, 13pp. doi: 10.1088/0266-5611/32/3/035007. Google Scholar

[24]

K. Shen and M. Zhang, An optimal class of non-degenerate potentials for second-order ordinary differential equations, Boundary Value Problems, 2015 (2015), 1-17. doi: 10.1186/s13661-015-0451-0. Google Scholar

[25]

X. Tang and M. Zhang, Lyapunov inequalities and stability for linear hamiltonian systems, Journal of Differential Equations, 252 (2012), 358-381. doi: 10.1016/j.jde.2011.08.002. Google Scholar

[26]

H. Wang and Y. Li, Two point boundary value problems for second-order ordinary differential equations across many resonant points, Journal of mathematical analysis and applications, 179 (1993), 61-75. doi: 10.1006/jmaa.1993.1335. Google Scholar

[27]

H. Wang and Y. Li, Neumann boundary value problems for second-order ordinary differential equations across resonance, SIAM journal on control and optimization, 33 (1995), 1312-1325. doi: 10.1137/S036301299324532X. Google Scholar

[28]

H. Wang and Y. Li, Existence and uniqueness of solutions to two point boundary value problems for ordinary differential equations, Zeitschrift für angewandte Mathematik und Physik ZAMP, 47 (1996), 373-384. doi: 10.1007/BF00916644. Google Scholar

[29]

M. Zhang, Extremal values of smallest eigenvalues of hill's operators with potentials in $L^1$ balls, Journal of Differential Equations, 246 (2009), 4188-4220. doi: 10.1016/j.jde.2009.03.016. Google Scholar

show all references

References:
[1] S. R. Bernfeld and V. Lakshmikantham, An Introduction to Nonlinear Boundary Value Problems, Elsevier, 1974. Google Scholar
[2]

G. Borg, On a liapounoff criterion of stability, American Journal of Mathematics, 71 (1949), 67-70. doi: 10.2307/2372093. Google Scholar

[3]

A. CañadaJ. A. Montero and S. Villegas, Lyapunov-type inequalities and neumann boundary value problems at resonance, Math. Inequal. Appl., 8 (2005), 459-475. doi: 10.7153/mia-08-42. Google Scholar

[4]

A. CañadaJ. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, Journal of Functional Analysis, 237 (2006), 176-193. doi: 10.1016/j.jfa.2005.12.011. Google Scholar

[5]

A. CañadaJ. A. Montero and S. Villegas, Lyapunov-type inequalities for differential equations, Mediterranean Journal of Mathematics, 3 (2006), 177-187. doi: 10.1007/s00009-006-0071-0. Google Scholar

[6]

A. Cañada and S. Villegas, Optimal lyapunov inequalities for disfocality and neumann boundary conditions using lp norms, Discrete Contin. Dyn. Syst. Ser. A, 20 (2008), 877-888. doi: 10.3934/dcds.2008.20.877. Google Scholar

[7]

A. Cañada and S. Villegas, Lyapunov inequalities for neumann boundary conditions at higher eigenvalues, J. Eur. Math. Soc. (JEMS), 12 (2010), 163-178. doi: 10.4171/JEMS/193. Google Scholar

[8]

A. Cañada and S. Villegas, Lyapunov inequalities for partial differential equations at radial higher eigenvalues, Discrete Contin. Dyn. Syst., 33 (2013), 111-122. doi: 10.3934/dcds.2013.33.111. Google Scholar

[9]

X. Chang and Q. Huang, Two-point boundary value problems for duffing equations across resonance, Journal of optimization theory and applications, 140 (2009), 419-430. doi: 10.1007/s10957-008-9461-8. Google Scholar

[10]

S.-S. Cheng, Lyapunov inequalities for differential and difference equations, Fasc. Math, 23 (1991), 25-41. Google Scholar

[11]

S. B. Eliason, A lyapunov inequality for a certain second order non-linear differential equation, Journal of the London Mathematical Society, 2 (1970), 461-466. doi: 10.1112/jlms/2.Part_3.461. Google Scholar

[12]

B. Harris and Q. Kong, On the oscillation of differential equations with an oscillatory coefficient, Transactions of the American Mathematical Society, 347 (1995), 1831-1839. doi: 10.1090/S0002-9947-1995-1283552-4. Google Scholar

[13] P. Hartman, Ordinary Differential Equations, Birkhauser, Boston, 1982. Google Scholar
[14]

J. Henderson, Best interval lengths for boundary value problems for third order lipschitz equations, SIAM journal on mathematical analysis, 18 (1987), 293-305. doi: 10.1137/0518023. Google Scholar

[15]

J. Henderson, Optimal interval lengths for nonlocal boundary value problems for second order lipschitz equations, Communications in Applied Analysis, 15 (2011), 475-482. Google Scholar

[16]

M. Grigor'evich Krein, On certain problems on the maximum and minimum of characteristic values and on the lyapunov zones of stability, Amer. Math. Soc. Transl., 1 (1955), 163-187. doi: 10.1090/trans2/001/08. Google Scholar

[17]

M. Lees, Discrete methods for nonlinear two-point boundary value problems, Numerical Solution of Partial Differential Equations, 1 (1966), 59-72. Google Scholar

[18]

Y. Li and H. Wang, Neumann problems for second order ordinary differential equations across resonance, Zeitschrift für angewandte Mathematik und Physik ZAMP, 46 (1995), 393-406. doi: 10.1007/BF01003558. Google Scholar

[19]

A. Liapounoff, Problème général de la stabilité du mouvement, In Annales de la faculté des sciences de Toulouse, 9 (1907), 203-474. Université Paul Sabatier. Google Scholar

[20]

G. López and J.-A. Montero-Sánchez, Neumann boundary value problems across resonance, ESAIM: Control, Optimisation and Calculus of Variations, 12 (2006), 398-408. doi: 10.1051/cocv:2006009. Google Scholar

[21]

J. Mawhin and J. Ward, Nonresonance and existence for nonlinear elliptic boundary value problems, Nonlinear Analysis: Theory, Methods & Applications, 5 (1981), 677-684. doi: 10.1016/0362-546X(81)90084-5. Google Scholar

[22]

J. P. Pinasco, Lower bounds for eigenvalues of the one-dimensional p-laplacian, In Abstract and Applied Analysis, Hindawi Publishing Corporation, 2004,147-153. doi: 10.1155/S108533750431002X. Google Scholar

[23]

J. Qi and S. Chen, Extremal norms of the potentials recovered from inverse dirichlet problems, Inverse Problems, 32 (2016), 035007, 13pp. doi: 10.1088/0266-5611/32/3/035007. Google Scholar

[24]

K. Shen and M. Zhang, An optimal class of non-degenerate potentials for second-order ordinary differential equations, Boundary Value Problems, 2015 (2015), 1-17. doi: 10.1186/s13661-015-0451-0. Google Scholar

[25]

X. Tang and M. Zhang, Lyapunov inequalities and stability for linear hamiltonian systems, Journal of Differential Equations, 252 (2012), 358-381. doi: 10.1016/j.jde.2011.08.002. Google Scholar

[26]

H. Wang and Y. Li, Two point boundary value problems for second-order ordinary differential equations across many resonant points, Journal of mathematical analysis and applications, 179 (1993), 61-75. doi: 10.1006/jmaa.1993.1335. Google Scholar

[27]

H. Wang and Y. Li, Neumann boundary value problems for second-order ordinary differential equations across resonance, SIAM journal on control and optimization, 33 (1995), 1312-1325. doi: 10.1137/S036301299324532X. Google Scholar

[28]

H. Wang and Y. Li, Existence and uniqueness of solutions to two point boundary value problems for ordinary differential equations, Zeitschrift für angewandte Mathematik und Physik ZAMP, 47 (1996), 373-384. doi: 10.1007/BF00916644. Google Scholar

[29]

M. Zhang, Extremal values of smallest eigenvalues of hill's operators with potentials in $L^1$ balls, Journal of Differential Equations, 246 (2009), 4188-4220. doi: 10.1016/j.jde.2009.03.016. Google Scholar

Figure 1.  Comparison of the classical Lyapunov inequality, main results in [28] and our revised inequalities
Figure 2.  The corresponding nontrivial solution $y(x)$
Figure 3.  The nontrivial solution $y(x)$
Figure 4.  The nontrivial solution $y(x)$
Figure 5.  The nontrivial solution $y(x)$
Figure 6.  The nontrivial solution $y(x)$
[1]

Xiaofei He, X. H. Tang. Lyapunov-type inequalities for even order differential equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 465-473. doi: 10.3934/cpaa.2012.11.465

[2]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[3]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[4]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[5]

Takayoshi Ogawa, Kento Seraku. Logarithmic Sobolev and Shannon's inequalities and an application to the uncertainty principle. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1651-1669. doi: 10.3934/cpaa.2018079

[6]

Kunquan Lan, Wei Lin. Lyapunov type inequalities for Hammerstein integral equations and applications to population dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1943-1960. doi: 10.3934/dcdsb.2018256

[7]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[8]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[9]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[10]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[11]

Ravi P. Agarwal, Abdullah Özbekler. Lyapunov type inequalities for $n$th order forced differential equations with mixed nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2281-2300. doi: 10.3934/cpaa.2016037

[12]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[13]

Marcus A. Khuri. On the local solvability of Darboux's equation. Conference Publications, 2009, 2009 (Special) : 451-456. doi: 10.3934/proc.2009.2009.451

[14]

Irena Pawłow, Wojciech M. Zajączkowski. Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 441-466. doi: 10.3934/dcdss.2011.4.441

[15]

Leszek Gasiński. Existence results for quasilinear hemivariational inequalities at resonance. Conference Publications, 2007, 2007 (Special) : 409-418. doi: 10.3934/proc.2007.2007.409

[16]

Jijiang Sun, Chun-Lei Tang. Resonance problems for Kirchhoff type equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2139-2154. doi: 10.3934/dcds.2013.33.2139

[17]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[18]

Zheng-Chao Han, YanYan Li. On the local solvability of the Nirenberg problem on $\mathbb S^2$. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 607-615. doi: 10.3934/dcds.2010.28.607

[19]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[20]

Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1291-1304. doi: 10.3934/dcds.2010.26.1291

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (19)
  • HTML views (33)
  • Cited by (0)

Other articles
by authors

[Back to Top]