October  2017, 10(5): 1063-1078. doi: 10.3934/dcdss.2017057

Traveling wave solutions of a reaction-diffusion predator-prey model

School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China

* the Corresponding author

Received  November 2016 Revised  January 2017 Published  June 2017

Fund Project: This work is supported by the Natural Science Foundation of China (Grant No.11471146)

This paper is concerned with the dynamics of traveling wave solutions for a reaction-diffusion predator-prey model with a nonlocal delay. By using Schauder's fixed point theorem, we establish the existence result of a traveling wave solution connecting two steady states by constructing a pair of upper-lower solutions which are easy to construct in practice. We also investigate the asymptotic behavior of traveling wave solutions by employing the standard asymptotic theory.

Citation: Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057
References:
[1]

N. F. Britton, Spatial structures and periodic traveling waves in an integrodifferential reaction-diffusion population model, SIAM. J. Appl. Math., 50 (1990), 1663-1688. doi: 10.1137/0150099. Google Scholar

[2]

X. Chen and Z. J. Du, Existence of positive periodic solutions for a neutral delay predator-prey model with Hassell-Varley type functional response and impulse, Qual. Theory Dyn. Syst. , (2017). doi: 10.1007/s12346-017-0223-6. Google Scholar

[3]

C. Conley and R. Gardner, An application of the generalized morse index to traveling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343. doi: 10.1512/iumj.1984.33.33018. Google Scholar

[4]

Q. T. GanR. Xu and X. Zhang, Traveling wave of a three-species Lotka-Volterra food-chain model with spatial diffusion and time delays, Nonlinear. Anal., 11 (2010), 2817-2832. doi: 10.1016/j.nonrwa.2009.10.006. Google Scholar

[5]

S. B. HsuT. W. Hwang and Y. Kuang, Golbal dynamics of a predator-prey model with Hassell-Varley type functional response, Discret. Contin. Dyn. Syst.B., 10 (2008), 857-871. doi: 10.3934/dcdsb.2008.10.857. Google Scholar

[6]

J. H. Huang and X. F. Zou, Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays, J. Math. Anal. Appl., 271 (2002), 455-466. doi: 10.1016/S0022-247X(02)00135-X. Google Scholar

[7]

J. Huang and X. Zou, Traveling wave solutions in delayer reaction diffusion systems with partial monotonicity, Acta. Math. Appl. Sinica., 22 (2006), 243-256. doi: 10.1007/s10255-006-0300-0. Google Scholar

[8]

X. Liang and X. Q. Zhao, Asymptotic speed of spread and traveling waves for monotone semiflows with applications, Comm. Pure. Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154. Google Scholar

[9]

Y. LinQ. R. Wang and K. Zhou, Traveling wave solutions in n-dimensional delayed reaction-diffusion systems with mixed monotonicity, J. Comput. Appl. Math., 243 (2013), 16-27. doi: 10.1016/j.cam.2012.11.007. Google Scholar

[10]

G. Y. Lv and M. X. Wang, Existence, uniqueness and asymptotic behavior of taraveling wave fronts for a vector disease model, Nonlinear Anal., 11 (2010), 2035-2043. doi: 10.1016/j.nonrwa.2009.05.006. Google Scholar

[11]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differetial Equations., 171 (2001), 294-314. doi: 10.1006/jdeq.2000.3846. Google Scholar

[12]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differetial equations, Trans. Amer. Math. Soc., 302 (1987), 587-615. doi: 10.2307/2000859. Google Scholar

[13]

X. H. ShangZ. J. Du and X. J. Lin, Traveling wave solutions in $n$-dimensional delayed reaction-diffusion systems and application to four-dimensional predator-prey systems, Math. Methods Appl. Sci., 39 (2016), 1607-1620. doi: 10.1002/mma.3595. Google Scholar

[14]

R. Xu, A reaction-diffusion predator-prey model with stage structure and nonlocal delay, Appl. Math. Comput., 175 (2006), 984-1006. doi: 10.1016/j.amc.2005.08.014. Google Scholar

[15]

R. Xu and Z. E. Ma, Global stability of a reaction-diffusion predator-prey model with a nonlocal delay, Math. Comput. Model., 50 (2009), 194-206. doi: 10.1016/j.mcm.2009.02.011. Google Scholar

[16]

R. Xu and X. Zhang, Gobal stability and traveling waves of a predator-prey model with diffusion and nonlocal maturation delay, Comm. Nonlinear. Sci. Numer. Simulat., 15 (2010), 3390-3401. doi: 10.1016/j.cnsns.2009.12.031. Google Scholar

[17]

G. B. ZhangW. T. Li and G. Lin, Traveling wave in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Model., 49 (2009), 1021-1029. doi: 10.1016/j.mcm.2008.09.007. Google Scholar

[18]

X. Zhang and R. Xu, Traveling waves of a diffusive predator-prey model with nonlocal delay and stage structure, J. Math. Anal. Appl., 373 (2011), 475-484. doi: 10.1016/j.jmaa.2010.07.044. Google Scholar

[19]

K. Zhou and Q. R. Wang, Traveling wave solutions in delayed nonlocal diffusion systems with mixed monotonicity, J. Math. Anal. Appl., 372 (2010), 598-610. doi: 10.1016/j.jmaa.2010.07.032. Google Scholar

show all references

References:
[1]

N. F. Britton, Spatial structures and periodic traveling waves in an integrodifferential reaction-diffusion population model, SIAM. J. Appl. Math., 50 (1990), 1663-1688. doi: 10.1137/0150099. Google Scholar

[2]

X. Chen and Z. J. Du, Existence of positive periodic solutions for a neutral delay predator-prey model with Hassell-Varley type functional response and impulse, Qual. Theory Dyn. Syst. , (2017). doi: 10.1007/s12346-017-0223-6. Google Scholar

[3]

C. Conley and R. Gardner, An application of the generalized morse index to traveling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984), 319-343. doi: 10.1512/iumj.1984.33.33018. Google Scholar

[4]

Q. T. GanR. Xu and X. Zhang, Traveling wave of a three-species Lotka-Volterra food-chain model with spatial diffusion and time delays, Nonlinear. Anal., 11 (2010), 2817-2832. doi: 10.1016/j.nonrwa.2009.10.006. Google Scholar

[5]

S. B. HsuT. W. Hwang and Y. Kuang, Golbal dynamics of a predator-prey model with Hassell-Varley type functional response, Discret. Contin. Dyn. Syst.B., 10 (2008), 857-871. doi: 10.3934/dcdsb.2008.10.857. Google Scholar

[6]

J. H. Huang and X. F. Zou, Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays, J. Math. Anal. Appl., 271 (2002), 455-466. doi: 10.1016/S0022-247X(02)00135-X. Google Scholar

[7]

J. Huang and X. Zou, Traveling wave solutions in delayer reaction diffusion systems with partial monotonicity, Acta. Math. Appl. Sinica., 22 (2006), 243-256. doi: 10.1007/s10255-006-0300-0. Google Scholar

[8]

X. Liang and X. Q. Zhao, Asymptotic speed of spread and traveling waves for monotone semiflows with applications, Comm. Pure. Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154. Google Scholar

[9]

Y. LinQ. R. Wang and K. Zhou, Traveling wave solutions in n-dimensional delayed reaction-diffusion systems with mixed monotonicity, J. Comput. Appl. Math., 243 (2013), 16-27. doi: 10.1016/j.cam.2012.11.007. Google Scholar

[10]

G. Y. Lv and M. X. Wang, Existence, uniqueness and asymptotic behavior of taraveling wave fronts for a vector disease model, Nonlinear Anal., 11 (2010), 2035-2043. doi: 10.1016/j.nonrwa.2009.05.006. Google Scholar

[11]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differetial Equations., 171 (2001), 294-314. doi: 10.1006/jdeq.2000.3846. Google Scholar

[12]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differetial equations, Trans. Amer. Math. Soc., 302 (1987), 587-615. doi: 10.2307/2000859. Google Scholar

[13]

X. H. ShangZ. J. Du and X. J. Lin, Traveling wave solutions in $n$-dimensional delayed reaction-diffusion systems and application to four-dimensional predator-prey systems, Math. Methods Appl. Sci., 39 (2016), 1607-1620. doi: 10.1002/mma.3595. Google Scholar

[14]

R. Xu, A reaction-diffusion predator-prey model with stage structure and nonlocal delay, Appl. Math. Comput., 175 (2006), 984-1006. doi: 10.1016/j.amc.2005.08.014. Google Scholar

[15]

R. Xu and Z. E. Ma, Global stability of a reaction-diffusion predator-prey model with a nonlocal delay, Math. Comput. Model., 50 (2009), 194-206. doi: 10.1016/j.mcm.2009.02.011. Google Scholar

[16]

R. Xu and X. Zhang, Gobal stability and traveling waves of a predator-prey model with diffusion and nonlocal maturation delay, Comm. Nonlinear. Sci. Numer. Simulat., 15 (2010), 3390-3401. doi: 10.1016/j.cnsns.2009.12.031. Google Scholar

[17]

G. B. ZhangW. T. Li and G. Lin, Traveling wave in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Model., 49 (2009), 1021-1029. doi: 10.1016/j.mcm.2008.09.007. Google Scholar

[18]

X. Zhang and R. Xu, Traveling waves of a diffusive predator-prey model with nonlocal delay and stage structure, J. Math. Anal. Appl., 373 (2011), 475-484. doi: 10.1016/j.jmaa.2010.07.044. Google Scholar

[19]

K. Zhou and Q. R. Wang, Traveling wave solutions in delayed nonlocal diffusion systems with mixed monotonicity, J. Math. Anal. Appl., 372 (2010), 598-610. doi: 10.1016/j.jmaa.2010.07.032. Google Scholar

[1]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[2]

Mostafa Bendahmane. Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis. Networks & Heterogeneous Media, 2008, 3 (4) : 863-879. doi: 10.3934/nhm.2008.3.863

[3]

Sebastién Gaucel, Michel Langlais. Some remarks on a singular reaction-diffusion system arising in predator-prey modeling. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 61-72. doi: 10.3934/dcdsb.2007.8.61

[4]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[5]

Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275

[6]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

[7]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[8]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1483-1508. doi: 10.3934/cpaa.2019071

[9]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[10]

Yuzo Hosono. Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 161-171. doi: 10.3934/dcdsb.2015.20.161

[11]

Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure & Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319

[12]

Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681

[13]

Anne Mund, Christina Kuttler, Judith Pérez-Velázquez. Existence and uniqueness of solutions to a family of semi-linear parabolic systems using coupled upper-lower solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5695-5707. doi: 10.3934/dcdsb.2019102

[14]

Hongmei Cheng, Rong Yuan. Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5433-5454. doi: 10.3934/dcds.2017236

[15]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[16]

Armengol Gasull, Hector Giacomini, Joan Torregrosa. Explicit upper and lower bounds for the traveling wave solutions of Fisher-Kolmogorov type equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3567-3582. doi: 10.3934/dcds.2013.33.3567

[17]

Lianzhang Bao, Zhengfang Zhou. Traveling wave solutions for a one dimensional model of cell-to-cell adhesion and diffusion with monostable reaction term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 395-412. doi: 10.3934/dcdss.2017019

[18]

Tiberiu Harko, Man Kwong Mak. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences & Engineering, 2015, 12 (1) : 41-69. doi: 10.3934/mbe.2015.12.41

[19]

Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

[20]

Ronald E. Mickens. Analysis of a new class of predator-prey model. Conference Publications, 2001, 2001 (Special) : 265-269. doi: 10.3934/proc.2001.2001.265

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (33)
  • HTML views (34)
  • Cited by (0)

Other articles
by authors

[Back to Top]