August  2017, 10(4): 815-835. doi: 10.3934/dcdss.2017041

Effective acoustic properties of a meta-material consisting of small Helmholtz resonators

Technische Universität Dortmund, Fakultät für Mathematik, Vogelpothsweg 87,44227 Dortmund, Germany

* Corresponding author: Ben Schweizer

Received  March 2016 Revised  October 2016 Published  April 2017

We investigate the acoustic properties of meta-materials that are inspired by sound-absorbing structures. We show that it is possible to construct meta-materials with frequency-dependent effective properties, with large and/or negative permittivities. Mathematically, we investigate solutions $u^\varepsilon : \Omega_\varepsilon \to \mathbb{R}$ to a Helmholtz equation in the limit $\varepsilon \to 0$ with the help of two-scale convergence. The domain $\Omega_\varepsilon $ is obtained by removing from an open set $\Omega\subset \mathbb{R}^n$ in a periodic fashion a large number (order $\varepsilon ^{-n}$) of small resonators (order $\varepsilon $). The special properties of the meta-material are obtained through sub-scale structures in the perforations.

Citation: Agnes Lamacz, Ben Schweizer. Effective acoustic properties of a meta-material consisting of small Helmholtz resonators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 815-835. doi: 10.3934/dcdss.2017041
References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084. Google Scholar

[2]

G. Allaire and M. Briane, Multiscale convergence and reiterated homogenisation, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 297-342. doi: 10.1017/S0308210500022757. Google Scholar

[3]

G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis, J. Math. Pures Appl., 77 (1998), 153-208. doi: 10.1016/S0021-7824(98)80068-8. Google Scholar

[4]

M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 407-436. Google Scholar

[5]

M. Bellieud and I. Gruais, Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non-local effects. Memory effects, J. Math. Pures Appl., 84 (2005), 55-96. doi: 10.1016/j.matpur.2004.02.003. Google Scholar

[6]

G. Bouchitté and M. Bellieud, Homogenization of a soft elastic material reinforced by fibers, Asymptot. Anal., 32 (2002), 153-183. Google Scholar

[7]

G. BouchittéC. Bourel and D. Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Math. Acad. Sci. Paris, 347 (2009), 571-576. Google Scholar

[8]

G. Bouchitté and D. Felbacq, Low frequency scattering by a set of parallel metallic rods, In Mathematical and numerical aspects of wave propagation (Santiago de Compostela, 2000), pages 226-230. SIAM, Philadelphia, PA, 2000.Google Scholar

[9]

G. Bouchitté and D. Felbacq, Homogenization near resonances and artificial magnetism from dielectrics, C. R. Math. Acad. Sci. Paris, 339 (2004), 377-382. Google Scholar

[10]

G. Bouchitté and D. Felbacq, Homogenization of a wire photonic crystal: the case of small volume fraction, SIAM J. Appl. Math., 66 (2006), 2061-2084. Google Scholar

[11]

G. Bouchitté and B. Schweizer, Homogenization of Maxwell's equations in a split ring geometry, Multiscale Model. Simul., 8 (2010), 717-750. Google Scholar

[12]

G. Bouchitté and B. Schweizer, Plasmonic waves allow perfect transmission through subwavelength metallic gratings, Netw. Heterog. Media, 8 (2013), 857-878. Google Scholar

[13]

Y. Chen and R. Lipton, Tunable double negative band structure from non-magnetic coated rods, New Journal of Physics, 12 (2010), 083010. doi: 10.1088/1367-2630/12/8/083010. Google Scholar

[14]

K. D. CherednichenkoV. P. Smyshlyaev and V. V. Zhikov, Non-local homogenized limits for composite media with highly anisotropic periodic fibres, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 87-114. doi: 10.1017/S0308210500004455. Google Scholar

[15]

V. Chiadò Piat and M. Codegone, Scattering problems in a domain with small holes, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 97 (2003), 447-454. Google Scholar

[16]

D. Cioranescu and F. Murat, A strange term coming from nowhere, In Topics in the mathematical modelling of composite materials, volume 31 of Progr. Nonlinear Differential Equations Appl. , pages 45-93. Birkhäuser Boston, Boston, MA, 1997. doi: 10.1007/978-1-4612-2032-9_4. Google Scholar

[17]

D. Cioranescu and J. Saint Jean Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590-607. doi: 10.1016/0022-247X(79)90211-7. Google Scholar

[18]

D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, volume 136 of Applied Mathematical Sciences, Springer-Verlag, New York, 1999.Google Scholar

[19]

C. Dörlemann, M. Heida and B. Schweizer, Transmission conditions for the Helmholtz equation in perforated domains, Vietnam J. Math. , 2016. doi: 10.1007/s10013-016-0222-y. Google Scholar

[20]

S. GuenneauF. Zolla and A. Nicolet, Homogenization of 3D finite photonic crystals with heterogeneous permittivity and permeability, Waves Random Complex Media, 17 (2007), 653-697. doi: 10.1080/17455030701607013. Google Scholar

[21]

V. V. Jikov, S. M. Kozlov and O. A. Oleĭnik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. Translated from the Russian by G. A. Yosifian[G. A. Iosifyan]. doi: 10.1007/978-3-642-84659-5. Google Scholar

[22]

R. Kohn and S. Shipman, Magnetism and homogenization of micro-resonators, Multiscale Modeling & Simulation, 7 (2007), 62-92. Google Scholar

[23]

R. V. KohnJ. LuB. Schweizer and M. I. Weinstein, A variational perspective on cloaking by anomalous localized resonance, Comm. Math. Phys., 328 (2014), 1-27. doi: 10.1007/s00220-014-1943-y. Google Scholar

[24]

A. Lamacz and B. Schweizer, Effective Maxwell equations in a geometry with flat rings of arbitrary shape, SIAM J. Math. Anal., 45 (2013), 1460-1494. doi: 10.1137/120874321. Google Scholar

[25]

A. Lamacz and B. Schweizer, A negative index meta-material for Maxwell's equations, SIAM J. Math. Anal., 48 (2016), 4155-4174. doi: 10.1137/16M1064246. Google Scholar

[26]

V. A. Marchenko and E. Y. Khruslov, Homogenization of Partial Differential Equations, volume 46 of Progress in Mathematical Physics, Birkhäuser Boston, Inc. , Boston, MA, 2006. Translated from the 2005 Russian original by M. Goncharenko and D. Shepelsky.Google Scholar

[27]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043. Google Scholar

[28]

S. O'Brien and J. Pendry, Magnetic activity at infrared frequencies in structured metallic photonic crystals, J. Phys. Condens. Mat., 14 (2002), 6383-6394. Google Scholar

[29]

J. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett., 85 (2000), p3966. doi: 10.1103/PhysRevLett.85.3966. Google Scholar

[30]

E. Sánchez-Palencia, Nonhomogeneous Media and Vibration Theory, volume 127 of Lecture Notes in Physics, Springer-Verlag, Berlin, 1980.Google Scholar

[31]

B. Schweizer, The low-frequency spectrum of small Helmholtz resonators, Proc. A., 0339 (2014), 20140339. doi: 10.1098/rspa.2014.0339. Google Scholar

[32]

B. Schweizer, Resonance meets homogenization -Construction of meta-materials with astonishing properties, Jahresberichte der DMV, 2016. doi: 10.1365/s13291-016-0153-2. Google Scholar

[33]

V. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Soviet Physics Uspekhi, 10 (1968), 509-514. Google Scholar

[34]

V. V. Zhikov, Two-scale convergence and spectral problems of homogenization, Tr. Semin. im. Petrovskogo I. G., 22 (2002), 105-120. Google Scholar

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084. Google Scholar

[2]

G. Allaire and M. Briane, Multiscale convergence and reiterated homogenisation, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 297-342. doi: 10.1017/S0308210500022757. Google Scholar

[3]

G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis, J. Math. Pures Appl., 77 (1998), 153-208. doi: 10.1016/S0021-7824(98)80068-8. Google Scholar

[4]

M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 407-436. Google Scholar

[5]

M. Bellieud and I. Gruais, Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non-local effects. Memory effects, J. Math. Pures Appl., 84 (2005), 55-96. doi: 10.1016/j.matpur.2004.02.003. Google Scholar

[6]

G. Bouchitté and M. Bellieud, Homogenization of a soft elastic material reinforced by fibers, Asymptot. Anal., 32 (2002), 153-183. Google Scholar

[7]

G. BouchittéC. Bourel and D. Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Math. Acad. Sci. Paris, 347 (2009), 571-576. Google Scholar

[8]

G. Bouchitté and D. Felbacq, Low frequency scattering by a set of parallel metallic rods, In Mathematical and numerical aspects of wave propagation (Santiago de Compostela, 2000), pages 226-230. SIAM, Philadelphia, PA, 2000.Google Scholar

[9]

G. Bouchitté and D. Felbacq, Homogenization near resonances and artificial magnetism from dielectrics, C. R. Math. Acad. Sci. Paris, 339 (2004), 377-382. Google Scholar

[10]

G. Bouchitté and D. Felbacq, Homogenization of a wire photonic crystal: the case of small volume fraction, SIAM J. Appl. Math., 66 (2006), 2061-2084. Google Scholar

[11]

G. Bouchitté and B. Schweizer, Homogenization of Maxwell's equations in a split ring geometry, Multiscale Model. Simul., 8 (2010), 717-750. Google Scholar

[12]

G. Bouchitté and B. Schweizer, Plasmonic waves allow perfect transmission through subwavelength metallic gratings, Netw. Heterog. Media, 8 (2013), 857-878. Google Scholar

[13]

Y. Chen and R. Lipton, Tunable double negative band structure from non-magnetic coated rods, New Journal of Physics, 12 (2010), 083010. doi: 10.1088/1367-2630/12/8/083010. Google Scholar

[14]

K. D. CherednichenkoV. P. Smyshlyaev and V. V. Zhikov, Non-local homogenized limits for composite media with highly anisotropic periodic fibres, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 87-114. doi: 10.1017/S0308210500004455. Google Scholar

[15]

V. Chiadò Piat and M. Codegone, Scattering problems in a domain with small holes, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 97 (2003), 447-454. Google Scholar

[16]

D. Cioranescu and F. Murat, A strange term coming from nowhere, In Topics in the mathematical modelling of composite materials, volume 31 of Progr. Nonlinear Differential Equations Appl. , pages 45-93. Birkhäuser Boston, Boston, MA, 1997. doi: 10.1007/978-1-4612-2032-9_4. Google Scholar

[17]

D. Cioranescu and J. Saint Jean Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590-607. doi: 10.1016/0022-247X(79)90211-7. Google Scholar

[18]

D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, volume 136 of Applied Mathematical Sciences, Springer-Verlag, New York, 1999.Google Scholar

[19]

C. Dörlemann, M. Heida and B. Schweizer, Transmission conditions for the Helmholtz equation in perforated domains, Vietnam J. Math. , 2016. doi: 10.1007/s10013-016-0222-y. Google Scholar

[20]

S. GuenneauF. Zolla and A. Nicolet, Homogenization of 3D finite photonic crystals with heterogeneous permittivity and permeability, Waves Random Complex Media, 17 (2007), 653-697. doi: 10.1080/17455030701607013. Google Scholar

[21]

V. V. Jikov, S. M. Kozlov and O. A. Oleĭnik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. Translated from the Russian by G. A. Yosifian[G. A. Iosifyan]. doi: 10.1007/978-3-642-84659-5. Google Scholar

[22]

R. Kohn and S. Shipman, Magnetism and homogenization of micro-resonators, Multiscale Modeling & Simulation, 7 (2007), 62-92. Google Scholar

[23]

R. V. KohnJ. LuB. Schweizer and M. I. Weinstein, A variational perspective on cloaking by anomalous localized resonance, Comm. Math. Phys., 328 (2014), 1-27. doi: 10.1007/s00220-014-1943-y. Google Scholar

[24]

A. Lamacz and B. Schweizer, Effective Maxwell equations in a geometry with flat rings of arbitrary shape, SIAM J. Math. Anal., 45 (2013), 1460-1494. doi: 10.1137/120874321. Google Scholar

[25]

A. Lamacz and B. Schweizer, A negative index meta-material for Maxwell's equations, SIAM J. Math. Anal., 48 (2016), 4155-4174. doi: 10.1137/16M1064246. Google Scholar

[26]

V. A. Marchenko and E. Y. Khruslov, Homogenization of Partial Differential Equations, volume 46 of Progress in Mathematical Physics, Birkhäuser Boston, Inc. , Boston, MA, 2006. Translated from the 2005 Russian original by M. Goncharenko and D. Shepelsky.Google Scholar

[27]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043. Google Scholar

[28]

S. O'Brien and J. Pendry, Magnetic activity at infrared frequencies in structured metallic photonic crystals, J. Phys. Condens. Mat., 14 (2002), 6383-6394. Google Scholar

[29]

J. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett., 85 (2000), p3966. doi: 10.1103/PhysRevLett.85.3966. Google Scholar

[30]

E. Sánchez-Palencia, Nonhomogeneous Media and Vibration Theory, volume 127 of Lecture Notes in Physics, Springer-Verlag, Berlin, 1980.Google Scholar

[31]

B. Schweizer, The low-frequency spectrum of small Helmholtz resonators, Proc. A., 0339 (2014), 20140339. doi: 10.1098/rspa.2014.0339. Google Scholar

[32]

B. Schweizer, Resonance meets homogenization -Construction of meta-materials with astonishing properties, Jahresberichte der DMV, 2016. doi: 10.1365/s13291-016-0153-2. Google Scholar

[33]

V. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Soviet Physics Uspekhi, 10 (1968), 509-514. Google Scholar

[34]

V. V. Zhikov, Two-scale convergence and spectral problems of homogenization, Tr. Semin. im. Petrovskogo I. G., 22 (2002), 105-120. Google Scholar

Figure 1.  Sketch of the scattering problem. Left: The sub-region $D\subset \Omega$ contains the small Helmholtz resonators, given by $\Sigma_\varepsilon \subset D$. The number of resonators in the region $D$ is of order $\varepsilon ^{-n}$. We are interested in the effective properties of the meta-material in $D$. Right: The microscopic geometry with the single resonator $R_Y$. The channel width inside $Y$ is of the order $\varepsilon ^p$
Figure 2.  Sketch of the geometry around the end-point of the channel
[1]

Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks & Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

[2]

Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks & Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361

[3]

Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks & Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461

[4]

Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473

[5]

Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks & Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97

[6]

Wenjia Jing, Olivier Pinaud. A backscattering model based on corrector theory of homogenization for the random Helmholtz equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-31. doi: 10.3934/dcdsb.2019063

[7]

Jiann-Sheng Jiang, Kung-Hwang Kuo, Chi-Kun Lin. Homogenization of second order equation with spatial dependent coefficient. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 303-313. doi: 10.3934/dcds.2005.12.303

[8]

Gregory A. Chechkin, Tatiana P. Chechkina, Ciro D’Apice, Umberto De Maio. Homogenization in domains randomly perforated along the boundary. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 713-730. doi: 10.3934/dcdsb.2009.12.713

[9]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. Homogenization of variational functionals with nonstandard growth in perforated domains. Networks & Heterogeneous Media, 2010, 5 (2) : 189-215. doi: 10.3934/nhm.2010.5.189

[10]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[11]

Ciro D’Apice, Umberto De Maio, Peter I. Kogut. Boundary velocity suboptimal control of incompressible flow in cylindrically perforated domain. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 283-314. doi: 10.3934/dcdsb.2009.11.283

[12]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[13]

Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Specified homogenization of a discrete traffic model leading to an effective junction condition. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2173-2206. doi: 10.3934/cpaa.2018104

[14]

Sang-Yeun Shim, Marcos Capistran, Yu Chen. Rapid perturbational calculations for the Helmholtz equation in two dimensions. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 627-636. doi: 10.3934/dcds.2007.18.627

[15]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden. Minimum free energy in the frequency domain for a heat conductor with memory. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 793-816. doi: 10.3934/dcdsb.2010.14.793

[16]

Sheree L. Arpin, J. M. Cushing. Modeling frequency-dependent selection with an application to cichlid fish. Mathematical Biosciences & Engineering, 2008, 5 (4) : 889-903. doi: 10.3934/mbe.2008.5.889

[17]

Gleb G. Doronin, Nikolai A. Larkin. Kawahara equation in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 783-799. doi: 10.3934/dcdsb.2008.10.783

[18]

T. A. Shaposhnikova, M. N. Zubova. Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks & Heterogeneous Media, 2008, 3 (3) : 675-689. doi: 10.3934/nhm.2008.3.675

[19]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[20]

Andrei Fursikov, Lyubov Shatina. Nonlocal stabilization by starting control of the normal equation generated by Helmholtz system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1187-1242. doi: 10.3934/dcds.2018050

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (9)
  • HTML views (4)
  • Cited by (0)

Other articles
by authors

[Back to Top]