American Institute of Mathematical Sciences

February  2017, 10(1): 141-160. doi: 10.3934/dcdss.2017008

Carbon-nanotube geometries: Analytical and numerical results

 1 Dipartimento di Ingegneria meccanica, energetica, gestionale, e dei trasporti (DIME), Università degli Studi di Genova, Piazzale Kennedy 1, I-16129 Genova, Italy 2 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria 3 Faculty of Mathematics, Kyushu University, 744 Motooka, Nishiku, Fukuoka, 819-0395, Japan 4 Istituto di Matematica Applicata e Tecnologie Informatiche "E. Magenes" -CNR, v. Ferrata 1, I-27100 Pavia, Italy

Received  June 2015 Revised  October 2015 Published  December 2016

We investigate carbon-nanotubes under the perspective ofgeometry optimization. Nanotube geometries are assumed to correspondto atomic configurations whichlocally minimize Tersoff-type interactionenergies. In the specific cases of so-called zigzag and armchairtopologies, candidate optimal configurations are analytically identifiedand their local minimality is numerically checked. Inparticular, these optimal configurations do not correspond neither tothe classical Rolled-up model [5] nor to themore recent polyhedral model [3]. Eventually, theelastic response of the structure under uniaxial testing is numericallyinvestigated and the validity of the Cauchy-Born rule is confirmed.

Citation: Edoardo Mainini, Hideki Murakawa, Paolo Piovano, Ulisse Stefanelli. Carbon-nanotube geometries: Analytical and numerical results. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 141-160. doi: 10.3934/dcdss.2017008
References:

show all references

References:
Rolling-up of nanotubes from a graphene sheet
Notation for bonds and bond angles
Zigzag nanotube
The construction of the function $\beta_z$
The angle $\beta_z$ as a function of the angle $\alpha$ (above) and a zoom (below) with the points $(\alpha^{\rm ru}_z,\beta_z(\alpha^{\rm ru}_z))$ and $(\alpha^{\rm ch}_z,\beta_z(\alpha^{\rm ch}_z))$ for $\ell=10$
The angle $\beta_a$ as a function of the angle $\alpha$ (above) and a zoom (below) with the points $(\alpha^{\rm ru}_a,\beta_a(\alpha^{\rm ru}_a))$ and $(\alpha^{\rm ch}_a,\beta_a(\alpha^{\rm ch}_a))$ for $\ell=10$
The energy-per-particle $\widehat E_i$ in the zigzag (above) and in the armchair (below) family, as a function of the angle $\alpha$ for $\ell=10$, together with a zoom about the minimum
Comparison between energies of the optimal configurations and energies of their perturbations in the cases Z1, Z2, Z3 (left, from the top) and A1, A2, A3 (right, from the top). The marker corresponds to the optimal configuration $\mathcal{F}_i^*$ and value $\alpha$ represents the mean of all $\alpha$-angles in the configuration
Optimality of the configuration $(F^*_L,L)\in \mathscr{F}_z$ (bottom point) for all given $L$ in a neighborhood of $L^*$
Elastic response of the nanotube Z1 under uniaxial small (left) and large displacements (right). The function $L \mapsto E(F_L^*,L)$ (bottom) corresponds to the lower envelope of the random evaluations (top)
 [1] Rabah Amir, Igor V. Evstigneev. A new perspective on the classical Cournot duopoly. Journal of Dynamics & Games, 2017, 4 (4) : 361-367. doi: 10.3934/jdg.2017019 [2] Huiqiang Jiang. Energy minimizers of a thin film equation with born repulsion force. Communications on Pure & Applied Analysis, 2011, 10 (2) : 803-815. doi: 10.3934/cpaa.2011.10.803 [3] Huaying Guo, Jin Liang. An optimal control model of carbon reduction and trading. Mathematical Control & Related Fields, 2016, 6 (4) : 535-550. doi: 10.3934/mcrf.2016015 [4] Martin Frank, Benjamin Seibold. Optimal prediction for radiative transfer: A new perspective on moment closure. Kinetic & Related Models, 2011, 4 (3) : 717-733. doi: 10.3934/krm.2011.4.717 [5] Dinh-Liem Nguyen. The factorization method for the Drude-Born-Fedorov model for periodic chiral structures. Inverse Problems & Imaging, 2016, 10 (2) : 519-547. doi: 10.3934/ipi.2016010 [6] Kota Kumazaki. A mathematical model of carbon dioxide transport in concrete carbonation process. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 113-125. doi: 10.3934/dcdss.2014.7.113 [7] Dayi He, Xiaoling Chen, Qi Huang. Influences of carbon emission abatement on firms' production policy based on newsboy model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 251-265. doi: 10.3934/jimo.2016015 [8] Haifeng Hu, Kaijun Zhang. Stability of the stationary solution of the cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate. Kinetic & Related Models, 2015, 8 (1) : 117-151. doi: 10.3934/krm.2015.8.117 [9] Anis Theljani, Ke Chen. An augmented lagrangian method for solving a new variational model based on gradients similarity measures and high order regulariation for multimodality registration. Inverse Problems & Imaging, 2019, 13 (2) : 309-335. doi: 10.3934/ipi.2019016 [10] Teemu Lukkari, Mikko Parviainen. Stability of degenerate parabolic Cauchy problems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 201-216. doi: 10.3934/cpaa.2015.14.201 [11] Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control & Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012 [12] Frederik Riis Mikkelsen. A model based rule for selecting spiking thresholds in neuron models. Mathematical Biosciences & Engineering, 2016, 13 (3) : 569-578. doi: 10.3934/mbe.2016008 [13] Chjan C. Lim, Da Zhu. Variational analysis of energy-enstrophy theories on the sphere. Conference Publications, 2005, 2005 (Special) : 611-620. doi: 10.3934/proc.2005.2005.611 [14] L.R. Ritter, Akif Ibragimov, Jay R. Walton, Catherine J. McNeal. Stability analysis using an energy estimate approach of a reaction-diffusion model of atherogenesis. Conference Publications, 2009, 2009 (Special) : 630-639. doi: 10.3934/proc.2009.2009.630 [15] Goro Akagi. Energy solutions of the Cauchy-Neumann problem for porous medium equations. Conference Publications, 2009, 2009 (Special) : 1-10. doi: 10.3934/proc.2009.2009.1 [16] Marina Chugunova, Roman M. Taranets. New dissipated energy for the unstable thin film equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 613-624. doi: 10.3934/cpaa.2011.10.613 [17] Yan Jin, Jürgen Jost, Guofang Wang. A new nonlocal variational setting for image processing. Inverse Problems & Imaging, 2015, 9 (2) : 415-430. doi: 10.3934/ipi.2015.9.415 [18] Shengji Li, Chunmei Liao, Minghua Li. Stability analysis of parametric variational systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 317-331. doi: 10.3934/naco.2011.1.317 [19] YunKyong Hyon, James E. Fonseca, Bob Eisenberg, Chun Liu. Energy variational approach to study charge inversion (layering) near charged walls. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2725-2743. doi: 10.3934/dcdsb.2012.17.2725 [20] Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735

2018 Impact Factor: 0.545