December  2016, 9(6): 2095-2111. doi: 10.3934/dcdss.2016086

Quasineutral limit of the Euler-Poisson system under strong magnetic fields

1. 

Department of Mathematics, Chongqing University, Chongqing 401331

Received  July 2015 Revised  September 2016 Published  November 2016

The quasineutral limit of the three dimensional compressible Euler-Poisson (EP) system for ions in plasma under strong magnetic field is rigorously studied. It is proved that as the Debye length and the Larmor radius tend to zero, the solution of the compressible EP system converges strongly to the strong solution of the one-dimensional compressible Euler-equation in the external magnetic field direction. Higher order approximation and convergence rates are also given and detailed studied.
Citation: Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086
References:
[1]

Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations,, Comm. Partial Differential Equations, 25 (2000), 737. doi: 10.1080/03605300008821529. Google Scholar

[2]

S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics,, Comm. Partial Differential Equations, 25 (2000), 1099. doi: 10.1080/03605300008821542. Google Scholar

[3]

D. Gérard-Varet, D. Han-Kwan and F. Rousset, Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries,, Indiana Univ. Math. J., 62 (2013), 359. doi: 10.1512/iumj.2013.62.4900. Google Scholar

[4]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field in quasineutral regime,, Math. Models Methods Appl. Sci., 13 (2003), 661. doi: 10.1142/S0218202503002647. Google Scholar

[5]

Y. Guo and X. Pu, KdV limit of the Euler-Poisson system,, Arch. Rational Mech. Anal., 211 (2014), 673. doi: 10.1007/s00205-013-0683-z. Google Scholar

[6]

D. Han-Kwan, Quasineutral limit of the Vlasov-Poisson system with massless electrons,, Comm. Partial Differential Equations, 36 (2011), 1385. doi: 10.1080/03605302.2011.555804. Google Scholar

[7]

Q. Ju, F. Li and H. Li, The quasineutral limit of compressible Navier-Stokes-Poisson system with heat conductivity and general initial data,, J. Differential Equations, 247 (2009), 203. doi: 10.1016/j.jde.2009.02.019. Google Scholar

[8]

D. Lannes, F. Linares and J.-C. Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation,, Studies in Phase Space Analysis with Applications to PDEs, 84 (2013), 181. doi: 10.1007/978-1-4614-6348-1_10. Google Scholar

[9]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Applied Mathematical Sciences, (1984). doi: 10.1007/978-1-4612-1116-7. Google Scholar

[10]

Y. Peng and S. Wang, Convergence of compressible Euler-Poisson equations to incompressible type Euler equations,, Asympt. Anal., 41 (2005), 141. Google Scholar

[11]

Y. Peng, S. Wang and Q. Gu, Relaxation limit and global existence of smooth solutions of compressible Euler-Maxwell equations,, SIAM J. Math. Anal., 43 (2011), 944. doi: 10.1137/100786927. Google Scholar

[12]

X. Pu, Dispersive limit of the Euler-Poisson system in higher dimensions,, SIAM J. Math. Anal., 45 (2013), 834. doi: 10.1137/120875648. Google Scholar

[13]

X. Pu and B. Guo, Quasineutral limit of the pressureless Euler-Poisson equation for ions,, Quart. Appl. Math., 74 (2016), 245. doi: 10.1090/qam/1424. Google Scholar

[14]

S. Wang, Quasineutral limit of Euler-Poisson system with and withour viscosity,, Commun. Partial Differential Equations, 29 (2004), 419. doi: 10.1081/PDE-120030403. Google Scholar

[15]

S. Wang and S. Jiang, The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations,, Comm. Partial Differential Equations, 31 (2006), 571. doi: 10.1080/03605300500361487. Google Scholar

show all references

References:
[1]

Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations,, Comm. Partial Differential Equations, 25 (2000), 737. doi: 10.1080/03605300008821529. Google Scholar

[2]

S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics,, Comm. Partial Differential Equations, 25 (2000), 1099. doi: 10.1080/03605300008821542. Google Scholar

[3]

D. Gérard-Varet, D. Han-Kwan and F. Rousset, Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries,, Indiana Univ. Math. J., 62 (2013), 359. doi: 10.1512/iumj.2013.62.4900. Google Scholar

[4]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field in quasineutral regime,, Math. Models Methods Appl. Sci., 13 (2003), 661. doi: 10.1142/S0218202503002647. Google Scholar

[5]

Y. Guo and X. Pu, KdV limit of the Euler-Poisson system,, Arch. Rational Mech. Anal., 211 (2014), 673. doi: 10.1007/s00205-013-0683-z. Google Scholar

[6]

D. Han-Kwan, Quasineutral limit of the Vlasov-Poisson system with massless electrons,, Comm. Partial Differential Equations, 36 (2011), 1385. doi: 10.1080/03605302.2011.555804. Google Scholar

[7]

Q. Ju, F. Li and H. Li, The quasineutral limit of compressible Navier-Stokes-Poisson system with heat conductivity and general initial data,, J. Differential Equations, 247 (2009), 203. doi: 10.1016/j.jde.2009.02.019. Google Scholar

[8]

D. Lannes, F. Linares and J.-C. Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation,, Studies in Phase Space Analysis with Applications to PDEs, 84 (2013), 181. doi: 10.1007/978-1-4614-6348-1_10. Google Scholar

[9]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,, Applied Mathematical Sciences, (1984). doi: 10.1007/978-1-4612-1116-7. Google Scholar

[10]

Y. Peng and S. Wang, Convergence of compressible Euler-Poisson equations to incompressible type Euler equations,, Asympt. Anal., 41 (2005), 141. Google Scholar

[11]

Y. Peng, S. Wang and Q. Gu, Relaxation limit and global existence of smooth solutions of compressible Euler-Maxwell equations,, SIAM J. Math. Anal., 43 (2011), 944. doi: 10.1137/100786927. Google Scholar

[12]

X. Pu, Dispersive limit of the Euler-Poisson system in higher dimensions,, SIAM J. Math. Anal., 45 (2013), 834. doi: 10.1137/120875648. Google Scholar

[13]

X. Pu and B. Guo, Quasineutral limit of the pressureless Euler-Poisson equation for ions,, Quart. Appl. Math., 74 (2016), 245. doi: 10.1090/qam/1424. Google Scholar

[14]

S. Wang, Quasineutral limit of Euler-Poisson system with and withour viscosity,, Commun. Partial Differential Equations, 29 (2004), 419. doi: 10.1081/PDE-120030403. Google Scholar

[15]

S. Wang and S. Jiang, The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations,, Comm. Partial Differential Equations, 31 (2006), 571. doi: 10.1080/03605300500361487. Google Scholar

[1]

Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108

[2]

Jiang Xu, Ting Zhang. Zero-electron-mass limit of Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4743-4768. doi: 10.3934/dcds.2013.33.4743

[3]

Qiangchang Ju, Hailiang Li, Yong Li, Song Jiang. Quasi-neutral limit of the two-fluid Euler-Poisson system. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1577-1590. doi: 10.3934/cpaa.2010.9.1577

[4]

Yeping Li. Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 345-360. doi: 10.3934/dcdsb.2011.16.345

[5]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[6]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[7]

Min Li, Xueke Pu, Shu Wang. Quasineutral limit for the quantum Navier-Stokes-Poisson equations. Communications on Pure & Applied Analysis, 2017, 16 (1) : 273-294. doi: 10.3934/cpaa.2017013

[8]

Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure & Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549

[9]

Hong Cai, Zhong Tan. Stability of stationary solutions to the compressible bipolar Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4677-4696. doi: 10.3934/dcds.2017201

[10]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[11]

Myoungjean Bae, Yong Park. Radial transonic shock solutions of Euler-Poisson system in convergent nozzles. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 773-791. doi: 10.3934/dcdss.2018049

[12]

Manwai Yuen. Cylindrical blowup solutions to the isothermal Euler-Poisson equations. Conference Publications, 2011, 2011 (Special) : 1448-1456. doi: 10.3934/proc.2011.2011.1448

[13]

Haigang Li, Jiguang Bao. Euler-Poisson equations related to general compressible rotating fluids. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1085-1096. doi: 10.3934/dcds.2011.29.1085

[14]

Sasho Popov, Jean-Marie Strelcyn. The Euler-Poisson equations: An elementary approach to integrability conditions. Journal of Geometric Mechanics, 2018, 10 (3) : 293-329. doi: 10.3934/jgm.2018011

[15]

Ming Mei, Yong Wang. Stability of stationary waves for full Euler-Poisson system in multi-dimensional space. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1775-1807. doi: 10.3934/cpaa.2012.11.1775

[16]

Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583

[17]

Corrado Lattanzio, Pierangelo Marcati. The relaxation to the drift-diffusion system for the 3-$D$ isentropic Euler-Poisson model for semiconductors. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 449-455. doi: 10.3934/dcds.1999.5.449

[18]

Masahiro Suzuki. Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics. Kinetic & Related Models, 2011, 4 (2) : 569-588. doi: 10.3934/krm.2011.4.569

[19]

Zhigang Wu, Weike Wang. Pointwise estimates of solutions for the Euler-Poisson equations with damping in multi-dimensions. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1101-1117. doi: 10.3934/dcds.2010.26.1101

[20]

Yeping Li, Jie Liao. Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]