December  2016, 9(6): 2031-2046. doi: 10.3934/dcdss.2016083

Second-order slip flow of a generalized Oldroyd-B fluid through porous medium

1. 

Gengdan Institute of Beijing University of Technology, Beijing 101301, China

2. 

School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

Received  August 2015 Revised  September 2016 Published  November 2016

This work is concerned the flow of a generalized Oldroyd-B fluid in a porous half-space with second-order slip effect. The fractional calculus approach is used to establish the constitutive relationship of the non-Newtonian fluid model. A new motion model is firstly proposed by modifying the boundary condition with second-order slip effect. Exact solutions for velocity and shear stress are obtained in terms of Fox H-function by using the discrete inverse Laplace transform of the sequential fractional derivatives. The similar solutions for the generalized Oldroyd-B fluid with first-order slip or no slip, and the solutions for a generalized Oldroyd-B fluid in nonporous medium, are obtained as the limiting cases of our solutions. Furthermore, the behavior of various parameters on the corresponding flow characteristics is shown graphical through different diagrams.
Citation: Yaqing Liu, Liancun Zheng. Second-order slip flow of a generalized Oldroyd-B fluid through porous medium. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2031-2046. doi: 10.3934/dcdss.2016083
References:
[1]

R. L. Bagley and P. T. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity,, J. Rheol., 27(3) (1983), 201.

[2]

R. L. Bagley and P. T. Torvik, On the fractional calculus model of viscoelastic behavior,, J. Rheol., 30 (1986), 133.

[3]

A. Beskok and G. E. Karniadakis, A model for flows in channels pipes, and ducts at micro and nano scales,, Microscale Therm. Eng., 3 (1999), 43.

[4]

C. Fetecau, T. Hayat, C. Fetecau and N. Alia, Unsteady flow of a second grade fluid between two side walls perpendicular to a plate,, Nonlinear Anal. RWA, 9 (2008), 1236. doi: 10.1016/j.nonrwa.2007.02.014.

[5]

C. Fetecau, M. Nazar and C. Fetecau, Unsteady flow of an Oldroyd-B fluid generated by a constantly accelerating plate between two side walls perpendicular to the plate,, Int. J. Non-Linear Mech., 44 (2009), 1039. doi: 10.1016/j.ijnonlinmec.2009.08.008.

[6]

C. Fetecau, C. Fetecau, M. Kamranc and D. Vieru, Exact solutions for the flow of a generalized Oldroyd-B fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate,, J. Non-Newtonian Fluid Mech., 156 (2009), 189. doi: 10.1016/j.jnnfm.2008.06.005.

[7]

Chr. Friedrich, Relaxation and retardation functions of the Maxwell model with fractional derivatives,, Rheol. Acta, 30 (1991), 151.

[8]

S. H. Han, L. C. Zheng and X. X. Zhang, Slip effects on a generalized Burgers' fluid flow between two side walls with fractional derivative,, J. Egypt. Math. Soc., 24 (2016), 130. doi: 10.1016/j.joems.2014.10.004.

[9]

A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Function: Theory and Applications,, Springer, (2010). doi: 10.1007/978-1-4612-0873-0.

[10]

J. C. Maxwell, On stresses in rarefied gases arising from inequalities of temperature,, Proc. R. Soc. Lond., 27 (1879), 304. doi: 10.1098/rspl.1878.0052.

[11]

M. Navier, Memoire sur les lois du movement des fluids,, Mem. L'Acad. Sci. L'Inst. France, 6 (1823), 389.

[12]

I. Podlubny, Fractional Differential Equations,, Academic Press, (1999). doi: 10.1007/978-1-4612-0873-0.

[13]

H. T. Qi and M. Y. Xu, Stokes' first problem for a viscoelastic fluid with the generalized Oldroyd-B model,, Acta Mech. Sin., 23 (2007), 463. doi: 10.1007/s10409-007-0093-2.

[14]

H. T. Qi and M. Y. Xu, Some unsteady unidirectional flows of a generalized Oldroyd-B fluid with fractional derivative,, Appl. Math. Model., 33 (2009), 4184. doi: 10.1016/j.apm.2009.03.002.

[15]

I. N. Sneddon, Fourier Transforms,, McGraw-Hill Book Company, (1951). doi: 10.1007/978-1-4612-0873-0.

[16]

D. Y. Song and T. Q. Jiang, Study on the constitutive equation with fractional derivative for the viscoelastic fluids Modified Jeffreys model and its application,, Rheol Acta, 27 (1998), 512.

[17]

W. C. Tan and T. Masuoka, Stokes' first problem for a second grade fluid in a porous half-space with heated boundary,, Int. J. Non-Linear Mech., 40 (2005), 515.

[18]

W. C. Tan and T. Masuoka, Stokes' first problem for an Oldroyd-B fluid in a porous half-space,, Phys. Fluid, 17 (2005). doi: 10.1063/1.1850409.

[19]

W. C. Tan, Velocity over shoot of start-up flow for a Maxwell fluid in a porous half-space,, Chin. Phys., 15 (2006), 2644.

[20]

W. C. Tan and T. Masuoka, Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous half-space,, Appl. Math. Model, 33 (2009), 524. doi: 10.1016/j.apm.2007.11.015.

[21]

C. F. Xue and J. X. Nie, An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space,, Rheol Acta, 30 (1991), 151.

[22]

C. F. Xue, J. X. Nie and W. C. Tan, An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space,, Nonlinear Anal. RWA, 9 (2008), 1628. doi: 10.1016/j.nonrwa.2007.04.007.

[23]

T. T. Zhang, L. Jia and Z. C. Wang, Validation of Navier-Stokes equations for slip flow analysis within transition region,, Int. J. Heat Mass Transfer, 51 (2008), 6323. doi: 10.1016/j.ijheatmasstransfer.2008.04.049.

[24]

T. T. Zhang, L. Jia, Z. C. Wang and X. Li, The application of homotopy analysis method for 2-dimensional steady slip flow in microchannels,, Phys. Lett. A , 372 (2008), 3223. doi: 10.1016/j.physleta.2008.01.077.

[25]

L. C. Zheng, X. X. Zhang and C. Q. Lu, Heat transfer of power law non-Newtonian,, Chin. Phys. Lett., 23 (2006), 3301.

[26]

L. C. Zheng, Y. Q. Liu and X. X. Zhang, Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative,, Nonlinear Anal. RWA, 13 (2012), 513. doi: 10.1016/j.nonrwa.2011.02.016.

[27]

J. Zhu, L. C. Zheng and Z. G. Zhang, The effect of the slip condition on the MHD stagnation-point over a power-law stretching sheet,, Appl. Math. Mech., 31 (2010), 439. doi: 10.1007/s10483-010-0404-z.

show all references

References:
[1]

R. L. Bagley and P. T. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity,, J. Rheol., 27(3) (1983), 201.

[2]

R. L. Bagley and P. T. Torvik, On the fractional calculus model of viscoelastic behavior,, J. Rheol., 30 (1986), 133.

[3]

A. Beskok and G. E. Karniadakis, A model for flows in channels pipes, and ducts at micro and nano scales,, Microscale Therm. Eng., 3 (1999), 43.

[4]

C. Fetecau, T. Hayat, C. Fetecau and N. Alia, Unsteady flow of a second grade fluid between two side walls perpendicular to a plate,, Nonlinear Anal. RWA, 9 (2008), 1236. doi: 10.1016/j.nonrwa.2007.02.014.

[5]

C. Fetecau, M. Nazar and C. Fetecau, Unsteady flow of an Oldroyd-B fluid generated by a constantly accelerating plate between two side walls perpendicular to the plate,, Int. J. Non-Linear Mech., 44 (2009), 1039. doi: 10.1016/j.ijnonlinmec.2009.08.008.

[6]

C. Fetecau, C. Fetecau, M. Kamranc and D. Vieru, Exact solutions for the flow of a generalized Oldroyd-B fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate,, J. Non-Newtonian Fluid Mech., 156 (2009), 189. doi: 10.1016/j.jnnfm.2008.06.005.

[7]

Chr. Friedrich, Relaxation and retardation functions of the Maxwell model with fractional derivatives,, Rheol. Acta, 30 (1991), 151.

[8]

S. H. Han, L. C. Zheng and X. X. Zhang, Slip effects on a generalized Burgers' fluid flow between two side walls with fractional derivative,, J. Egypt. Math. Soc., 24 (2016), 130. doi: 10.1016/j.joems.2014.10.004.

[9]

A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Function: Theory and Applications,, Springer, (2010). doi: 10.1007/978-1-4612-0873-0.

[10]

J. C. Maxwell, On stresses in rarefied gases arising from inequalities of temperature,, Proc. R. Soc. Lond., 27 (1879), 304. doi: 10.1098/rspl.1878.0052.

[11]

M. Navier, Memoire sur les lois du movement des fluids,, Mem. L'Acad. Sci. L'Inst. France, 6 (1823), 389.

[12]

I. Podlubny, Fractional Differential Equations,, Academic Press, (1999). doi: 10.1007/978-1-4612-0873-0.

[13]

H. T. Qi and M. Y. Xu, Stokes' first problem for a viscoelastic fluid with the generalized Oldroyd-B model,, Acta Mech. Sin., 23 (2007), 463. doi: 10.1007/s10409-007-0093-2.

[14]

H. T. Qi and M. Y. Xu, Some unsteady unidirectional flows of a generalized Oldroyd-B fluid with fractional derivative,, Appl. Math. Model., 33 (2009), 4184. doi: 10.1016/j.apm.2009.03.002.

[15]

I. N. Sneddon, Fourier Transforms,, McGraw-Hill Book Company, (1951). doi: 10.1007/978-1-4612-0873-0.

[16]

D. Y. Song and T. Q. Jiang, Study on the constitutive equation with fractional derivative for the viscoelastic fluids Modified Jeffreys model and its application,, Rheol Acta, 27 (1998), 512.

[17]

W. C. Tan and T. Masuoka, Stokes' first problem for a second grade fluid in a porous half-space with heated boundary,, Int. J. Non-Linear Mech., 40 (2005), 515.

[18]

W. C. Tan and T. Masuoka, Stokes' first problem for an Oldroyd-B fluid in a porous half-space,, Phys. Fluid, 17 (2005). doi: 10.1063/1.1850409.

[19]

W. C. Tan, Velocity over shoot of start-up flow for a Maxwell fluid in a porous half-space,, Chin. Phys., 15 (2006), 2644.

[20]

W. C. Tan and T. Masuoka, Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous half-space,, Appl. Math. Model, 33 (2009), 524. doi: 10.1016/j.apm.2007.11.015.

[21]

C. F. Xue and J. X. Nie, An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space,, Rheol Acta, 30 (1991), 151.

[22]

C. F. Xue, J. X. Nie and W. C. Tan, An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space,, Nonlinear Anal. RWA, 9 (2008), 1628. doi: 10.1016/j.nonrwa.2007.04.007.

[23]

T. T. Zhang, L. Jia and Z. C. Wang, Validation of Navier-Stokes equations for slip flow analysis within transition region,, Int. J. Heat Mass Transfer, 51 (2008), 6323. doi: 10.1016/j.ijheatmasstransfer.2008.04.049.

[24]

T. T. Zhang, L. Jia, Z. C. Wang and X. Li, The application of homotopy analysis method for 2-dimensional steady slip flow in microchannels,, Phys. Lett. A , 372 (2008), 3223. doi: 10.1016/j.physleta.2008.01.077.

[25]

L. C. Zheng, X. X. Zhang and C. Q. Lu, Heat transfer of power law non-Newtonian,, Chin. Phys. Lett., 23 (2006), 3301.

[26]

L. C. Zheng, Y. Q. Liu and X. X. Zhang, Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative,, Nonlinear Anal. RWA, 13 (2012), 513. doi: 10.1016/j.nonrwa.2011.02.016.

[27]

J. Zhu, L. C. Zheng and Z. G. Zhang, The effect of the slip condition on the MHD stagnation-point over a power-law stretching sheet,, Appl. Math. Mech., 31 (2010), 439. doi: 10.1007/s10483-010-0404-z.

[1]

Ruizhao Zi. Global solution in critical spaces to the compressible Oldroyd-B model with non-small coupling parameter. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6437-6470. doi: 10.3934/dcds.2017279

[2]

Matthias Hieber. Remarks on the theory of Oldroyd-B fluids in exterior domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1307-1313. doi: 10.3934/dcdss.2013.6.1307

[3]

Evgenii S. Baranovskii. Steady flows of an Oldroyd fluid with threshold slip. Communications on Pure & Applied Analysis, 2019, 18 (2) : 735-750. doi: 10.3934/cpaa.2019036

[4]

María Anguiano, Francisco Javier Suárez-Grau. Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks & Heterogeneous Media, 2019, 14 (2) : 289-316. doi: 10.3934/nhm.2019012

[5]

Yasir Ali, Arshad Alam Khan. Exact solution of magnetohydrodynamic slip flow and heat transfer over an oscillating and translating porous plate. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 595-606. doi: 10.3934/dcdss.2018034

[6]

Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

[7]

Zhiqiang Yang, Junzhi Cui, Qiang Ma. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 827-848. doi: 10.3934/dcdsb.2014.19.827

[8]

José F. Cariñena, Javier de Lucas Araujo. Superposition rules and second-order Riccati equations. Journal of Geometric Mechanics, 2011, 3 (1) : 1-22. doi: 10.3934/jgm.2011.3.1

[9]

Eugenii Shustin, Emilia Fridman, Leonid Fridman. Oscillations in a second-order discontinuous system with delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 339-358. doi: 10.3934/dcds.2003.9.339

[10]

Anna Marciniak-Czochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1065-1077. doi: 10.3934/dcdss.2014.7.1065

[11]

Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093

[12]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[13]

Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053

[14]

Qilin Wang, Xiao-Bing Li, Guolin Yu. Second-order weak composed epiderivatives and applications to optimality conditions. Journal of Industrial & Management Optimization, 2013, 9 (2) : 455-470. doi: 10.3934/jimo.2013.9.455

[15]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[16]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[17]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213

[18]

Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear second-order cone programming. Journal of Industrial & Management Optimization, 2013, 9 (1) : 171-189. doi: 10.3934/jimo.2013.9.171

[19]

Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609

[20]

Jaume Llibre, Amar Makhlouf. Periodic solutions of some classes of continuous second-order differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 477-482. doi: 10.3934/dcdsb.2017022

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]