December  2016, 9(6): 1913-1937. doi: 10.3934/dcdss.2016078

Well-posedness for the three-dimensional compressible liquid crystal flows

1. 

College of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. 

Institute of Applied Physics & Computational Math., Beijing 100088

Received  July 2015 Revised  September 2016 Published  November 2016

This paper is concerned with the initial-boundary value problem for the three-dimensional compressible liquid crystal flows. The system consists of the Navier-Stokes equations describing the evolution of a compressible viscous fluid coupled with various kinematic transport equations for the heat flow of harmonic maps into $\mathbb{S}^2$. Assuming the initial density has vacuum and the initial data satisfies a natural compatibility condition, the existence and uniqueness is established for the local strong solution with large initial data and also for the global strong solution with initial data being close to an equilibrium state. The existence result is proved via the local well-posedness and uniform estimates for a proper linearized system with convective terms.
Citation: Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078
References:
[1]

K. C. Chang, W. Y. Ding and R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces,, J. Diff. Geom., 36 (1992), 507. Google Scholar

[2]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids,, J. Diff. Equations, 190 (2003), 504. doi: 10.1016/S0022-0396(03)00015-9. Google Scholar

[3]

Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value prob lems for compressible viscous fluids,, J. Math. Pures Appl., 83 (2004), 243. doi: 10.1016/j.matpur.2003.11.004. Google Scholar

[4]

Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum,, J. Diff. Equations, 228 (2006), 377. doi: 10.1016/j.jde.2006.05.001. Google Scholar

[5]

S. Ding, C. Wang and H. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one,, Discrete Conti. Dyna. Sys. Ser. B, 15 (2011), 357. doi: 10.3934/dcdsb.2011.15.357. Google Scholar

[6]

S. Ding, J. Lin, C. Wang and H. Wen, Compressible hydrodynamic flow of liquid crystals in 1-D,, Discrete Conti. Dyna. Sys., 32 (2012), 539. doi: 10.3934/dcds.2012.32.539. Google Scholar

[7]

J. Ericksen, Conservation laws for liquid crystals,, Trans. Soc. Rheol., 5 (1961), 22. doi: 10.1122/1.548883. Google Scholar

[8]

J. Ericksen, Equilibrium theory for liquid crystals, in: G. Brown (Ed.),, Advances in Liquid Crystals, 2 (1976), 233. doi: 10.1016/B978-0-12-025002-8.50012-9. Google Scholar

[9]

J. Ericksen, Continuum theory of nematic liquid crystals,, Molecular Crystals, 7 (2007), 153. doi: 10.1080/15421406908084869. Google Scholar

[10]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two,, Calc. Var. Partial Diff. Equations, 40 (2011), 15. doi: 10.1007/s00526-010-0331-5. Google Scholar

[11]

X. Hu and H. Wu, Global solution to the three-dimensional compressible flow of liquid crystals,, SIAM J. Math. Anal., 45 (2013), 2678. doi: 10.1137/120898814. Google Scholar

[12]

T. Huang, C. Wang and H. Wen, Strong solutions of the compressible nematic liquid crystal flow,, J. Diff. Equations, 252 (2012), 2222. doi: 10.1016/j.jde.2011.07.036. Google Scholar

[13]

T. Huang, C. Wang and H. Wen, Blow up criterion for compressible nematic liquid crystal flows in dimension three,, Arch. Rational Mech. Anal., 204 (2012), 285. doi: 10.1007/s00205-011-0476-1. Google Scholar

[14]

F. Jiang and Z. Tan, Global weak solution to the flow of liquid crystals system,, Math. Meth. Appl. Sci., 32 (2009), 2243. doi: 10.1002/mma.1132. Google Scholar

[15]

F. M. Leslie, Theory of flow phenomena in liquid crystals, in: G. Brown (Ed.),, Advances in Liquid Crystals, 4 (1979), 1. doi: 10.1016/B978-0-12-025004-2.50008-9. Google Scholar

[16]

X. Li and D. Wang, Global strong solution to the density-dependent incompressible flow of liquid crystals,, Trans. Amer. Math. Soc., 367 (2015), 2301. doi: 10.1090/S0002-9947-2014-05924-2. Google Scholar

[17]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystal: Phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789. doi: 10.1002/cpa.3160420605. Google Scholar

[18]

F. H. Lin, Existence of solutions for the Ericksen-Leslie system,, Arch. Rat. Mech. Anal., 154 (2000), 135. doi: 10.1007/s002050000102. Google Scholar

[19]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501. doi: 10.1002/cpa.3160480503. Google Scholar

[20]

F. H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals,, Discrete Conti. Dyna. Sys., 2 (1996), 1. Google Scholar

[21]

F. H. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions,, Arch. Ration. Mech. Anal., 197 (2010), 297. doi: 10.1007/s00205-009-0278-x. Google Scholar

[22]

C. Liu, Dynamic theory for incompressible smectic-A liquid crystals,, Discrete Conti. Dyna. Sys., 6 (2000), 591. doi: 10.3934/dcds.2000.6.591. Google Scholar

[23]

X. Liu, L. Liu and Y. Hao, Existence of strong solutions for the compressible Ericksen-Leslie model,, , (). Google Scholar

[24]

X. Liu and Z. Zhang, {Existence of the flow of liquid crystals system,, Chinese Ann. Math., 30 (2009), 1. Google Scholar

[25]

S. Shkoller, Well-posedness and global attractors for liquid crystals on Riemannian manifolds,, Comm. Partial Diff. Equations, 27 (2001), 1103. doi: 10.1081/PDE-120004895. Google Scholar

[26]

C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data,, Arch. Ration. Mech. Anal., 200 (2011), 1. doi: 10.1007/s00205-010-0343-5. Google Scholar

[27]

H. Wen and S. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals,, Nonlinear Analysis: Real World Applications, 12 (2011), 1510. doi: 10.1016/j.nonrwa.2010.10.010. Google Scholar

show all references

References:
[1]

K. C. Chang, W. Y. Ding and R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces,, J. Diff. Geom., 36 (1992), 507. Google Scholar

[2]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids,, J. Diff. Equations, 190 (2003), 504. doi: 10.1016/S0022-0396(03)00015-9. Google Scholar

[3]

Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value prob lems for compressible viscous fluids,, J. Math. Pures Appl., 83 (2004), 243. doi: 10.1016/j.matpur.2003.11.004. Google Scholar

[4]

Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum,, J. Diff. Equations, 228 (2006), 377. doi: 10.1016/j.jde.2006.05.001. Google Scholar

[5]

S. Ding, C. Wang and H. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one,, Discrete Conti. Dyna. Sys. Ser. B, 15 (2011), 357. doi: 10.3934/dcdsb.2011.15.357. Google Scholar

[6]

S. Ding, J. Lin, C. Wang and H. Wen, Compressible hydrodynamic flow of liquid crystals in 1-D,, Discrete Conti. Dyna. Sys., 32 (2012), 539. doi: 10.3934/dcds.2012.32.539. Google Scholar

[7]

J. Ericksen, Conservation laws for liquid crystals,, Trans. Soc. Rheol., 5 (1961), 22. doi: 10.1122/1.548883. Google Scholar

[8]

J. Ericksen, Equilibrium theory for liquid crystals, in: G. Brown (Ed.),, Advances in Liquid Crystals, 2 (1976), 233. doi: 10.1016/B978-0-12-025002-8.50012-9. Google Scholar

[9]

J. Ericksen, Continuum theory of nematic liquid crystals,, Molecular Crystals, 7 (2007), 153. doi: 10.1080/15421406908084869. Google Scholar

[10]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two,, Calc. Var. Partial Diff. Equations, 40 (2011), 15. doi: 10.1007/s00526-010-0331-5. Google Scholar

[11]

X. Hu and H. Wu, Global solution to the three-dimensional compressible flow of liquid crystals,, SIAM J. Math. Anal., 45 (2013), 2678. doi: 10.1137/120898814. Google Scholar

[12]

T. Huang, C. Wang and H. Wen, Strong solutions of the compressible nematic liquid crystal flow,, J. Diff. Equations, 252 (2012), 2222. doi: 10.1016/j.jde.2011.07.036. Google Scholar

[13]

T. Huang, C. Wang and H. Wen, Blow up criterion for compressible nematic liquid crystal flows in dimension three,, Arch. Rational Mech. Anal., 204 (2012), 285. doi: 10.1007/s00205-011-0476-1. Google Scholar

[14]

F. Jiang and Z. Tan, Global weak solution to the flow of liquid crystals system,, Math. Meth. Appl. Sci., 32 (2009), 2243. doi: 10.1002/mma.1132. Google Scholar

[15]

F. M. Leslie, Theory of flow phenomena in liquid crystals, in: G. Brown (Ed.),, Advances in Liquid Crystals, 4 (1979), 1. doi: 10.1016/B978-0-12-025004-2.50008-9. Google Scholar

[16]

X. Li and D. Wang, Global strong solution to the density-dependent incompressible flow of liquid crystals,, Trans. Amer. Math. Soc., 367 (2015), 2301. doi: 10.1090/S0002-9947-2014-05924-2. Google Scholar

[17]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystal: Phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789. doi: 10.1002/cpa.3160420605. Google Scholar

[18]

F. H. Lin, Existence of solutions for the Ericksen-Leslie system,, Arch. Rat. Mech. Anal., 154 (2000), 135. doi: 10.1007/s002050000102. Google Scholar

[19]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501. doi: 10.1002/cpa.3160480503. Google Scholar

[20]

F. H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals,, Discrete Conti. Dyna. Sys., 2 (1996), 1. Google Scholar

[21]

F. H. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions,, Arch. Ration. Mech. Anal., 197 (2010), 297. doi: 10.1007/s00205-009-0278-x. Google Scholar

[22]

C. Liu, Dynamic theory for incompressible smectic-A liquid crystals,, Discrete Conti. Dyna. Sys., 6 (2000), 591. doi: 10.3934/dcds.2000.6.591. Google Scholar

[23]

X. Liu, L. Liu and Y. Hao, Existence of strong solutions for the compressible Ericksen-Leslie model,, , (). Google Scholar

[24]

X. Liu and Z. Zhang, {Existence of the flow of liquid crystals system,, Chinese Ann. Math., 30 (2009), 1. Google Scholar

[25]

S. Shkoller, Well-posedness and global attractors for liquid crystals on Riemannian manifolds,, Comm. Partial Diff. Equations, 27 (2001), 1103. doi: 10.1081/PDE-120004895. Google Scholar

[26]

C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data,, Arch. Ration. Mech. Anal., 200 (2011), 1. doi: 10.1007/s00205-010-0343-5. Google Scholar

[27]

H. Wen and S. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals,, Nonlinear Analysis: Real World Applications, 12 (2011), 1510. doi: 10.1016/j.nonrwa.2010.10.010. Google Scholar

[1]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[2]

Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 357-371. doi: 10.3934/dcdsb.2011.15.357

[3]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[4]

T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101

[5]

Tong Tang, Yongfu Wang. Strong solutions to compressible barotropic viscoelastic flow with vacuum. Kinetic & Related Models, 2015, 8 (4) : 765-775. doi: 10.3934/krm.2015.8.765

[6]

Xian-Gao Liu, Jie Qing. Globally weak solutions to the flow of compressible liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 757-788. doi: 10.3934/dcds.2013.33.757

[7]

Shijin Ding, Junyu Lin, Changyou Wang, Huanyao Wen. Compressible hydrodynamic flow of liquid crystals in 1-D. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 539-563. doi: 10.3934/dcds.2012.32.539

[8]

Yachun Li, Shengguo Zhu. Existence results for compressible radiation hydrodynamic equations with vacuum. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1023-1052. doi: 10.3934/cpaa.2015.14.1023

[9]

Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591

[10]

Patricia Bauman, Daniel Phillips, Jinhae Park. Existence of solutions to boundary value problems for smectic liquid crystals. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 243-257. doi: 10.3934/dcdss.2015.8.243

[11]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[12]

Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124

[13]

Jishan Fan, Shuxiang Huang, Fucai Li. Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. Kinetic & Related Models, 2017, 10 (4) : 1035-1053. doi: 10.3934/krm.2017041

[14]

Tai-Ping Liu, Zhouping Xin, Tong Yang. Vacuum states for compressible flow. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 1-32. doi: 10.3934/dcds.1998.4.1

[15]

Yingshan Chen, Mei Zhang. A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions. Kinetic & Related Models, 2016, 9 (3) : 429-441. doi: 10.3934/krm.2016001

[16]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[17]

Zefu Feng, Changjiang Zhu. Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3069-3097. doi: 10.3934/dcds.2019127

[18]

Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213

[19]

Yang Liu, Sining Zheng, Huapeng Li, Shengquan Liu. Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3921-3938. doi: 10.3934/dcds.2017165

[20]

T. Tachim Medjo. Existence and uniqueness of strong periodic solutions of the primitive equations of the ocean. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1491-1508. doi: 10.3934/dcds.2010.26.1491

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]