American Institute of Mathematical Sciences

December  2016, 9(6): 1899-1912. doi: 10.3934/dcdss.2016077

A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$

 1 School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China 2 Department of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640 3 College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453007

Received  July 2015 Revised  September 2016 Published  November 2016

In this paper we study the threshold of global existence and blow-up for the solutions to the generalized 3D Davey-Stewartson equations \begin{equation*} \left\{ \begin{aligned} & iu_t + \Delta u + |u|^{p-1} u + E_1(|u|^2)u = 0, \quad t > 0, \ \ x\in \mathbb{R}^3, \\ & u(0,x) = u_0(x) \in H^1(\mathbb{R}^3), \end{aligned} \right. \end{equation*} where $1 < p < \frac{7}{3}$ and the operator $E_1$ is given by $E_1(f) = \mathcal {F}^{-1} \left( \frac{\xi_1^2}{|\xi|^2} \mathcal{F}(f) \right)$. We construct two kinds of invariant sets under the evolution flow by analyzing the property of the upper bound function of the energy. Then we show that the solution exists globally for the initial function $u_0$ in first kind of the invariant sets, while the solution blows up in finite time for $u_0$ in another kind. We remark that the exponent $p$ is subcritical for the nonlinear Schrödinger equations for which blow-up solutions would not occur. The result shows that the occurrence of blow-up phenomenon is caused by the coupling mechanics of the Davey-Stewartson equations.
Citation: Shiming Li, Yongsheng Li, Wei Yan. A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1899-1912. doi: 10.3934/dcdss.2016077
References:
 [1] D. Anker and N. C. Freeman, On the soliton solutions of the Davey-Stewartson equation for long waves,, Proc. Roy. Soc. London, 360 (1978), 529. doi: 10.1098/rspa.1978.0083. Google Scholar [2] M. J. Ablowitz and A. S. Fokas, On the inverse scattering transform of multidimensional nonlinear equations related to first-order systems in the plane,, J. Math. Phys., 25 (1984), 2494. doi: 10.1063/1.526471. Google Scholar [3] R. Cipolatti, On the existence of standing waves for a Davey-Stewartson system,, Commun. Partial Diff. Eqns., 17 (1992), 967. doi: 10.1080/03605309208820872. Google Scholar [4] R. Cipolatti, On the instability of ground states for a Davey-Stewartson system,, Ann. Inst. H. Poincaré, 58 (1993), 85. Google Scholar [5] V. D. Djordjevic and L. G. Redekopp, On two-dimensional packets of capillary-gravity waves,, J. Fluid Mech., 79 (1977), 703. doi: 10.1017/S0022112077000408. Google Scholar [6] A. Davey and S. K. Stewartson, On three-dimensional packets of surface waves,, Proc. R. Soc. London, 338 (1974), 101. doi: 10.1098/rspa.1974.0076. Google Scholar [7] Z. H. Gan and J. Zhang, Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system,, Commun. Math. Phys., 283 (2008), 93. doi: 10.1007/s00220-008-0456-y. Google Scholar [8] J. M. Ghidaglia and J. C. Saut, On the initial value problem for the Davey-Stewartson systems,, Nonlinearity, 3 (1990), 475. doi: 10.1088/0951-7715/3/2/010. Google Scholar [9] N. Godet, A lower bound on the blow-up rate for the Davey-Stewartson system on the torus,, Ann. Inst. H. Poincaré - AN, 30 (2013), 691. doi: 10.1016/j.anihpc.2012.12.001. Google Scholar [10] B. L. Guo and B. X. Wang, The Cauchy problem for Davey-Stewartson systems,, Commun. Pure Appl. Math., 52 (1999), 1477. doi: 10.1002/(SICI)1097-0312(199912)52:12<1477::AID-CPA1>3.0.CO;2-N. Google Scholar [11] N. Hayashi, Local existence in time of small solutions to the Davey-Stewartson systems,, Ann. Inst. H. Poincaré, 65 (1996), 313. Google Scholar [12] N. Hayashi and H. Hirata, Global existence and asymptotic behavior in time of small solutions to the elliptic-hyperbolic Davey-Stewartson system,, Nonlinearity, 9 (1996), 1387. doi: 10.1088/0951-7715/9/6/001. Google Scholar [13] N. Hayashi and J. C. Saut, Global existence of small solutions to the Davey-Stewartson and the Ishimori systems,, Diff. and Integ. Eqns., 8 (1995), 1657. Google Scholar [14] T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited,, Intern. Math. Res. Notices, 46 (2005), 2815. doi: 10.1155/IMRN.2005.2815. Google Scholar [15] X. G. Li, J. Zhang, S. Y. Lai and Y. H. Wu, The sharp threshold and limiting profile of blow-up solutions for a Davey-Stewartson system,, J. Diff. Eqns., 250 (2011), 2197. doi: 10.1016/j.jde.2010.10.022. Google Scholar [16] F. Linares and G. Ponce, On the Davey-Stewartson systems,, Ann. Inst. H. Poincaré, 10 (1993), 523. Google Scholar [17] J. Lu and Y. F. Wu, Sharp threshold for scattering of a generalized Davey-Stewartson system in three dimension,, Commun. Pure Appl. Anal., 14 (2015), 1641. doi: 10.3934/cpaa.2015.14.1641. Google Scholar [18] T. Ozawa, Exact blow-up solutions to Cauchy problem for the Davey-Stewartson system,, Proc. R. Soc. Lond. Ser. A, 436 (1992), 345. doi: 10.1098/rspa.1992.0022. Google Scholar [19] M. Ohta, Stability of standing waves for the generalized Davey-Stewartson system,, J. Dyn. Diff. Eqns., 6 (1994), 325. doi: 10.1007/BF02218533. Google Scholar [20] G. Richards, Mass concentration for the Davey-Stewartson system,, Diff. and Integ. Eqns., 24 (2011), 261. Google Scholar [21] J. Shu and J. Zhang, Sharp conditions of global existence for the generalized Davey-Stewartson system,, IMA J. Appl. Math., 72 (2007), 36. doi: 10.1093/imamat/hxl029. Google Scholar [22] M. Tsutsumi, Decay of weak solutions to the Davey-Stewartson systems,, J. Math. Anal. Appl., 182 (1994), 680. doi: 10.1006/jmaa.1994.1113. Google Scholar [23] B. X. Wang and B. L. Guo, On the initial value problem and scattering of solutions for the generalized Davey-Stewartson systems,, Sci. China Ser. A, 44 (2001), 994. doi: 10.1007/BF02878975. Google Scholar [24] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Commun. Math. Phys., 87 (1983), 567. Google Scholar [25] H. Yang, X. M. Fan and S. H. Zhu, Global analysis for rough solutions to the Davey- Stewartson system,, Abstract and Appl. Anal., 2012 (2012). Google Scholar [26] J. Zhang and S. Zhu, Sharp blow-up criteria for the Davey-Stewartson system in $\mathbbR^3$,, Dyn. Partial Diff. Eqns., 8 (2011), 239. doi: 10.4310/DPDE.2011.v8.n3.a4. Google Scholar [27] S. H. Zhu, Blow-up dynamics of $L^2$ solutions for the Davey-Stewartson system,, Acta Math. Sinica, 31 (2015), 411. doi: 10.1007/s10114-015-4349-7. Google Scholar

show all references

References:
 [1] D. Anker and N. C. Freeman, On the soliton solutions of the Davey-Stewartson equation for long waves,, Proc. Roy. Soc. London, 360 (1978), 529. doi: 10.1098/rspa.1978.0083. Google Scholar [2] M. J. Ablowitz and A. S. Fokas, On the inverse scattering transform of multidimensional nonlinear equations related to first-order systems in the plane,, J. Math. Phys., 25 (1984), 2494. doi: 10.1063/1.526471. Google Scholar [3] R. Cipolatti, On the existence of standing waves for a Davey-Stewartson system,, Commun. Partial Diff. Eqns., 17 (1992), 967. doi: 10.1080/03605309208820872. Google Scholar [4] R. Cipolatti, On the instability of ground states for a Davey-Stewartson system,, Ann. Inst. H. Poincaré, 58 (1993), 85. Google Scholar [5] V. D. Djordjevic and L. G. Redekopp, On two-dimensional packets of capillary-gravity waves,, J. Fluid Mech., 79 (1977), 703. doi: 10.1017/S0022112077000408. Google Scholar [6] A. Davey and S. K. Stewartson, On three-dimensional packets of surface waves,, Proc. R. Soc. London, 338 (1974), 101. doi: 10.1098/rspa.1974.0076. Google Scholar [7] Z. H. Gan and J. Zhang, Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system,, Commun. Math. Phys., 283 (2008), 93. doi: 10.1007/s00220-008-0456-y. Google Scholar [8] J. M. Ghidaglia and J. C. Saut, On the initial value problem for the Davey-Stewartson systems,, Nonlinearity, 3 (1990), 475. doi: 10.1088/0951-7715/3/2/010. Google Scholar [9] N. Godet, A lower bound on the blow-up rate for the Davey-Stewartson system on the torus,, Ann. Inst. H. Poincaré - AN, 30 (2013), 691. doi: 10.1016/j.anihpc.2012.12.001. Google Scholar [10] B. L. Guo and B. X. Wang, The Cauchy problem for Davey-Stewartson systems,, Commun. Pure Appl. Math., 52 (1999), 1477. doi: 10.1002/(SICI)1097-0312(199912)52:12<1477::AID-CPA1>3.0.CO;2-N. Google Scholar [11] N. Hayashi, Local existence in time of small solutions to the Davey-Stewartson systems,, Ann. Inst. H. Poincaré, 65 (1996), 313. Google Scholar [12] N. Hayashi and H. Hirata, Global existence and asymptotic behavior in time of small solutions to the elliptic-hyperbolic Davey-Stewartson system,, Nonlinearity, 9 (1996), 1387. doi: 10.1088/0951-7715/9/6/001. Google Scholar [13] N. Hayashi and J. C. Saut, Global existence of small solutions to the Davey-Stewartson and the Ishimori systems,, Diff. and Integ. Eqns., 8 (1995), 1657. Google Scholar [14] T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited,, Intern. Math. Res. Notices, 46 (2005), 2815. doi: 10.1155/IMRN.2005.2815. Google Scholar [15] X. G. Li, J. Zhang, S. Y. Lai and Y. H. Wu, The sharp threshold and limiting profile of blow-up solutions for a Davey-Stewartson system,, J. Diff. Eqns., 250 (2011), 2197. doi: 10.1016/j.jde.2010.10.022. Google Scholar [16] F. Linares and G. Ponce, On the Davey-Stewartson systems,, Ann. Inst. H. Poincaré, 10 (1993), 523. Google Scholar [17] J. Lu and Y. F. Wu, Sharp threshold for scattering of a generalized Davey-Stewartson system in three dimension,, Commun. Pure Appl. Anal., 14 (2015), 1641. doi: 10.3934/cpaa.2015.14.1641. Google Scholar [18] T. Ozawa, Exact blow-up solutions to Cauchy problem for the Davey-Stewartson system,, Proc. R. Soc. Lond. Ser. A, 436 (1992), 345. doi: 10.1098/rspa.1992.0022. Google Scholar [19] M. Ohta, Stability of standing waves for the generalized Davey-Stewartson system,, J. Dyn. Diff. Eqns., 6 (1994), 325. doi: 10.1007/BF02218533. Google Scholar [20] G. Richards, Mass concentration for the Davey-Stewartson system,, Diff. and Integ. Eqns., 24 (2011), 261. Google Scholar [21] J. Shu and J. Zhang, Sharp conditions of global existence for the generalized Davey-Stewartson system,, IMA J. Appl. Math., 72 (2007), 36. doi: 10.1093/imamat/hxl029. Google Scholar [22] M. Tsutsumi, Decay of weak solutions to the Davey-Stewartson systems,, J. Math. Anal. Appl., 182 (1994), 680. doi: 10.1006/jmaa.1994.1113. Google Scholar [23] B. X. Wang and B. L. Guo, On the initial value problem and scattering of solutions for the generalized Davey-Stewartson systems,, Sci. China Ser. A, 44 (2001), 994. doi: 10.1007/BF02878975. Google Scholar [24] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Commun. Math. Phys., 87 (1983), 567. Google Scholar [25] H. Yang, X. M. Fan and S. H. Zhu, Global analysis for rough solutions to the Davey- Stewartson system,, Abstract and Appl. Anal., 2012 (2012). Google Scholar [26] J. Zhang and S. Zhu, Sharp blow-up criteria for the Davey-Stewartson system in $\mathbbR^3$,, Dyn. Partial Diff. Eqns., 8 (2011), 239. doi: 10.4310/DPDE.2011.v8.n3.a4. Google Scholar [27] S. H. Zhu, Blow-up dynamics of $L^2$ solutions for the Davey-Stewartson system,, Acta Math. Sinica, 31 (2015), 411. doi: 10.1007/s10114-015-4349-7. Google Scholar
 [1] Christian Klein, Benson Muite, Kristelle Roidot. Numerical study of blow-up in the Davey-Stewartson system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1361-1387. doi: 10.3934/dcdsb.2013.18.1361 [2] Christian Klein, Jean-Claude Saut. A numerical approach to Blow-up issues for Davey-Stewartson II systems. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1443-1467. doi: 10.3934/cpaa.2015.14.1443 [3] Zaihui Gan, Boling Guo, Jian Zhang. Sharp threshold of global existence for the generalized Davey-Stewartson system in $R^2$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 913-922. doi: 10.3934/cpaa.2009.8.913 [4] Jing Lu, Yifei Wu. Sharp threshold for scattering of a generalized Davey-Stewartson system in three dimension. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1641-1670. doi: 10.3934/cpaa.2015.14.1641 [5] Uchida Hidetake. Analytic smoothing effect and global existence of small solutions for the elliptic-hyperbolic Davey-Stewartson system. Conference Publications, 2001, 2001 (Special) : 182-190. doi: 10.3934/proc.2001.2001.182 [6] Olivier Goubet, Manal Hussein. Global attractor for the Davey-Stewartson system on $\mathbb R^2$. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1555-1575. doi: 10.3934/cpaa.2009.8.1555 [7] Caroline Obrecht, J.-C. Saut. Remarks on the full dispersion Davey-Stewartson systems. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1547-1561. doi: 10.3934/cpaa.2015.14.1547 [8] Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827 [9] Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051 [10] Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072 [11] T. Colin, D. Lannes. Justification of and long-wave correction to Davey-Stewartson systems from quadratic hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 83-100. doi: 10.3934/dcds.2004.11.83 [12] Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633 [13] Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721 [14] Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519 [15] Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535 [16] Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058 [17] Bin Li. On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic & Related Models, 2019, 12 (5) : 1131-1162. doi: 10.3934/krm.2019043 [18] Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169 [19] Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 [20] Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333

2018 Impact Factor: 0.545