December  2016, 9(6): 1701-1715. doi: 10.3934/dcdss.2016071

Approximation of random invariant manifolds for a stochastic Swift-Hohenberg equation

1. 

School of Science, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China, China

2. 

Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616

Received  June 2015 Revised  September 2016 Published  November 2016

Random invariant manifolds are considered for a stochastic Swift-Hohenberg equation with multiplicative noise in the Stratonovich sense. Using a stochastic transformation and a technique of cut-off function, existence of random invariant manifolds and attracting property of the corresponding random dynamical system are obtained by Lyaponov-Perron method. Then in the sense of large probability, an approximation of invariant manifolds has been investigated and this is further used to describe the geometric shape of the invariant manifolds.
Citation: Yanfeng Guo, Jinqiao Duan, Donglong Li. Approximation of random invariant manifolds for a stochastic Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1701-1715. doi: 10.3934/dcdss.2016071
References:
[1]

L. Arnold, Random Dynamical Systems,, Springer-Verlag, (1998). doi: 10.1007/978-3-662-12878-7. Google Scholar

[2]

D. Blömker, M. Hairer and G. A. Pavliotis, Stochastic Swift-Hohenberg equaion near a change of stability,, Proceedings of Equadiff, 11 (2005), 27. Google Scholar

[3]

D. Blömker and W. Wang, Qualitative properties of local random invariant manifolds for SPDE with quadratic nonlinearity,, J. Dyn. Differ. Equ., 22 (2010), 677. doi: 10.1007/s10884-009-9145-6. Google Scholar

[4]

D. Blömker, Amplitude Equations for Stochastic Partial Differential Equations,, vol.3 of Interdisciplinary Mathematical Sciences. World Scientific Publishing, (2007). doi: 10.1142/9789812770608. Google Scholar

[5]

G. Chen, J. Duan and J. Zhang, Geometric shape of invariant manifolds for a class of stochastic partial differential equations,, J. Math. Phys., 52 (2011). doi: 10.1063/1.3614777. Google Scholar

[6]

M. D. Chekroun, H. H. Liu and S. H. Wang, Stochastic Parameterizing Manifolds and non-Markovian Reduced Equations-Stochastic Manifolds for Nonlinear SPDEs II,, Springer Briefs in Mathematics, (2015). doi: 10.1007/978-3-319-12520-6. Google Scholar

[7]

I. Chueshov, Monotone Random Systems Theory and Applications,, Springer-Verlag, (2002). doi: 10.1007/b83277. Google Scholar

[8]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dyn. Differ. Equ., 9 (1997), 307. doi: 10.1007/BF02219225. Google Scholar

[9]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Theory Rel. Fields, 100 (1994), 365. doi: 10.1007/BF01193705. Google Scholar

[10]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992). doi: 10.1017/CBO9780511666223. Google Scholar

[11]

J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic differential equations,, Ann. Probab., 31 (2003), 2109. doi: 10.1214/aop/1068646380. Google Scholar

[12]

J. Duan and K. Lu, Smooth stable and unstable manifolds for stoahcstic partial differential equations,, J. Dyn. Diff. Equ., 16 (2004), 949. doi: 10.1007/s10884-004-7830-z. Google Scholar

[13]

J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations,, Elsevier, (2014). Google Scholar

[14]

J. P. Eckmann and C. E. Wayne, Propagating fronts and the center manifold theorem,, Commun. Math. Phys, 136 (1991), 285. doi: 10.1007/BF02100026. Google Scholar

[15]

H. Fu, X. Liu and J. Duan, Slow manifolds for multi-time-scale stochastic evolutionary systems,, Commun. Math. Sci., 11 (2013), 141. doi: 10.4310/CMS.2013.v11.n1.a5. Google Scholar

[16]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer-Varlag, (1981). Google Scholar

[17]

D. Y. Hsieh, A. Q. Tang and X. P. Wang, On hydrodynamics instabilities, chaos, and phase transition,, Acta Mech. Sin., 12 (1996), 1. doi: 10.1007/BF02486757. Google Scholar

[18]

M. F. Hilali, S. Metens, P. Borckmans and G. Dewel, Pattern selection in the generalized Swift-Hohenberg equation,, Phys. Rev. E, 51 (1995), 2046. Google Scholar

[19]

P. Imkeller and A. Monahan, Conceptual stochastic climate dynamics,, Stoch. Dynam., 2 (2002), 311. Google Scholar

[20]

G. Lin, H. Gao, J. Duan and V. J. Ervin, Asymptotic dynamical difference between the nonlocal and local Swift-Hohenberg models,, J. Math. Phys., 41 (2000), 2077. doi: 10.1063/1.533228. Google Scholar

[21]

A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains: Existence and comparison,, Nonlinearity, 8 (1995), 734. doi: 10.1088/0951-7715/8/5/006. Google Scholar

[22]

J. Oh, J. M. Ortiz de Zárate, J. V. Sengers and G. Ahlers, Dynamics of fluctuations in a fluid below the onset of Rayleigh-Bnárd convection,, Phys. Rev. E, 69 (2004). Google Scholar

[23]

J. Oh and G. Ahlers, Thermal-noise effect on the transition to Rayleigh-Bnárd convection,, Phys. Rev. Lett., 91 (2003). Google Scholar

[24]

A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations,, Springer-Varlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[25]

I. Rehberg, S. Rasenat, M. de la Torre Juárez, W. Schöpf, F. Hörner, G. Ahlers and H. R. Brand, Thermally induced hydrodynamic fluctuations below the onset of electroconvection,, Phys. Rev. Lett., 67 (1991), 596. doi: 10.1103/PhysRevLett.67.596. Google Scholar

[26]

X. Sun, J. Duan and X. Li, An impact of noise on invariant manifolds in nonlinear dynamical systems,, J. Math. Phys., 51 (2010). doi: 10.1063/1.3371010. Google Scholar

[27]

J. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability,, Phys. Rev. A, 15 (1977), 319. doi: 10.1103/PhysRevA.15.319. Google Scholar

[28]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[29]

W. Wang and J. Duan, A dynamical approximation for stochastic partial differential equations,, J. Math. Phys., 48 (2007). doi: 10.1063/1.2800164. Google Scholar

[30]

W. Wang, J. Sun and J. Duan, Ergodic dynamics of the stochastic Swift-Hohenberg system,, Nonlinear Analysis: Real World Appl., 6 (2005), 273. doi: 10.1016/j.nonrwa.2004.08.009. Google Scholar

[31]

E. Waymire and J. Duan, Probability and Partial Differential Equations in Modern Applied Mathematics,, IMA, (2005). doi: 10.1007/978-0-387-29371-4. Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems,, Springer-Verlag, (1998). doi: 10.1007/978-3-662-12878-7. Google Scholar

[2]

D. Blömker, M. Hairer and G. A. Pavliotis, Stochastic Swift-Hohenberg equaion near a change of stability,, Proceedings of Equadiff, 11 (2005), 27. Google Scholar

[3]

D. Blömker and W. Wang, Qualitative properties of local random invariant manifolds for SPDE with quadratic nonlinearity,, J. Dyn. Differ. Equ., 22 (2010), 677. doi: 10.1007/s10884-009-9145-6. Google Scholar

[4]

D. Blömker, Amplitude Equations for Stochastic Partial Differential Equations,, vol.3 of Interdisciplinary Mathematical Sciences. World Scientific Publishing, (2007). doi: 10.1142/9789812770608. Google Scholar

[5]

G. Chen, J. Duan and J. Zhang, Geometric shape of invariant manifolds for a class of stochastic partial differential equations,, J. Math. Phys., 52 (2011). doi: 10.1063/1.3614777. Google Scholar

[6]

M. D. Chekroun, H. H. Liu and S. H. Wang, Stochastic Parameterizing Manifolds and non-Markovian Reduced Equations-Stochastic Manifolds for Nonlinear SPDEs II,, Springer Briefs in Mathematics, (2015). doi: 10.1007/978-3-319-12520-6. Google Scholar

[7]

I. Chueshov, Monotone Random Systems Theory and Applications,, Springer-Verlag, (2002). doi: 10.1007/b83277. Google Scholar

[8]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dyn. Differ. Equ., 9 (1997), 307. doi: 10.1007/BF02219225. Google Scholar

[9]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Theory Rel. Fields, 100 (1994), 365. doi: 10.1007/BF01193705. Google Scholar

[10]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992). doi: 10.1017/CBO9780511666223. Google Scholar

[11]

J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic differential equations,, Ann. Probab., 31 (2003), 2109. doi: 10.1214/aop/1068646380. Google Scholar

[12]

J. Duan and K. Lu, Smooth stable and unstable manifolds for stoahcstic partial differential equations,, J. Dyn. Diff. Equ., 16 (2004), 949. doi: 10.1007/s10884-004-7830-z. Google Scholar

[13]

J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations,, Elsevier, (2014). Google Scholar

[14]

J. P. Eckmann and C. E. Wayne, Propagating fronts and the center manifold theorem,, Commun. Math. Phys, 136 (1991), 285. doi: 10.1007/BF02100026. Google Scholar

[15]

H. Fu, X. Liu and J. Duan, Slow manifolds for multi-time-scale stochastic evolutionary systems,, Commun. Math. Sci., 11 (2013), 141. doi: 10.4310/CMS.2013.v11.n1.a5. Google Scholar

[16]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer-Varlag, (1981). Google Scholar

[17]

D. Y. Hsieh, A. Q. Tang and X. P. Wang, On hydrodynamics instabilities, chaos, and phase transition,, Acta Mech. Sin., 12 (1996), 1. doi: 10.1007/BF02486757. Google Scholar

[18]

M. F. Hilali, S. Metens, P. Borckmans and G. Dewel, Pattern selection in the generalized Swift-Hohenberg equation,, Phys. Rev. E, 51 (1995), 2046. Google Scholar

[19]

P. Imkeller and A. Monahan, Conceptual stochastic climate dynamics,, Stoch. Dynam., 2 (2002), 311. Google Scholar

[20]

G. Lin, H. Gao, J. Duan and V. J. Ervin, Asymptotic dynamical difference between the nonlocal and local Swift-Hohenberg models,, J. Math. Phys., 41 (2000), 2077. doi: 10.1063/1.533228. Google Scholar

[21]

A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains: Existence and comparison,, Nonlinearity, 8 (1995), 734. doi: 10.1088/0951-7715/8/5/006. Google Scholar

[22]

J. Oh, J. M. Ortiz de Zárate, J. V. Sengers and G. Ahlers, Dynamics of fluctuations in a fluid below the onset of Rayleigh-Bnárd convection,, Phys. Rev. E, 69 (2004). Google Scholar

[23]

J. Oh and G. Ahlers, Thermal-noise effect on the transition to Rayleigh-Bnárd convection,, Phys. Rev. Lett., 91 (2003). Google Scholar

[24]

A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations,, Springer-Varlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[25]

I. Rehberg, S. Rasenat, M. de la Torre Juárez, W. Schöpf, F. Hörner, G. Ahlers and H. R. Brand, Thermally induced hydrodynamic fluctuations below the onset of electroconvection,, Phys. Rev. Lett., 67 (1991), 596. doi: 10.1103/PhysRevLett.67.596. Google Scholar

[26]

X. Sun, J. Duan and X. Li, An impact of noise on invariant manifolds in nonlinear dynamical systems,, J. Math. Phys., 51 (2010). doi: 10.1063/1.3371010. Google Scholar

[27]

J. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability,, Phys. Rev. A, 15 (1977), 319. doi: 10.1103/PhysRevA.15.319. Google Scholar

[28]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[29]

W. Wang and J. Duan, A dynamical approximation for stochastic partial differential equations,, J. Math. Phys., 48 (2007). doi: 10.1063/1.2800164. Google Scholar

[30]

W. Wang, J. Sun and J. Duan, Ergodic dynamics of the stochastic Swift-Hohenberg system,, Nonlinear Analysis: Real World Appl., 6 (2005), 273. doi: 10.1016/j.nonrwa.2004.08.009. Google Scholar

[31]

E. Waymire and J. Duan, Probability and Partial Differential Equations in Modern Applied Mathematics,, IMA, (2005). doi: 10.1007/978-0-387-29371-4. Google Scholar

[1]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[2]

Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203

[3]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579

[4]

Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993

[5]

Henk Broer, Aaron Hagen, Gert Vegter. Numerical approximation of normally hyperbolic invariant manifolds. Conference Publications, 2003, 2003 (Special) : 133-140. doi: 10.3934/proc.2003.2003.133

[6]

Rovella Alvaro, Vilamajó Francesc, Romero Neptalí. Invariant manifolds for delay endomorphisms. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 35-50. doi: 10.3934/dcds.2001.7.35

[7]

Arne Ogrowsky, Björn Schmalfuss. Unstable invariant manifolds for a nonautonomous differential equation with nonautonomous unbounded delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1663-1681. doi: 10.3934/dcdsb.2013.18.1663

[8]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[9]

Ludwig Arnold, Igor Chueshov. Cooperative random and stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 1-33. doi: 10.3934/dcds.2001.7.1

[10]

C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002

[11]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[12]

Lok Ming Lui, Yalin Wang, Tony F. Chan, Paul M. Thompson. Brain anatomical feature detection by solving partial differential equations on general manifolds. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 605-618. doi: 10.3934/dcdsb.2007.7.605

[13]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[14]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[15]

José F. Alves, Davide Azevedo. Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 1-41. doi: 10.3934/dcds.2016.36.1

[16]

George Osipenko. Indestructibility of invariant locally non-unique manifolds. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 203-219. doi: 10.3934/dcds.1996.2.203

[17]

Christopher K. R. T. Jones, Siu-Kei Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 967-1023. doi: 10.3934/dcdss.2009.2.967

[18]

Arturo Echeverría-Enríquez, Alberto Ibort, Miguel C. Muñoz-Lecanda, Narciso Román-Roy. Invariant forms and automorphisms of locally homogeneous multisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (4) : 397-419. doi: 10.3934/jgm.2012.4.397

[19]

Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1

[20]

Roberto Castelli. Efficient representation of invariant manifolds of periodic orbits in the CRTBP. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 563-586. doi: 10.3934/dcdsb.2018197

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]