December  2016, 9(6): 1629-1645. doi: 10.3934/dcdss.2016067

The bifurcations of solitary and kink waves described by the Gardner equation

1. 

School of Mathematics, South China University of Technology, Guangzhou 510640, China

2. 

Department of Mathematics, South China University of Technology, Guangzhou 510640

Received  July 2015 Revised  September 2016 Published  November 2016

In this paper, we investigate the bifurcations of nonlinear waves described by the Gardner equation $u_{t}+a u u_{x}+b u^{2} u_{x}+\gamma u_{xxx}=0$. We obtain some new results as follows: For arbitrary given parameters $b$ and $\gamma$, we choose the parameter $a$ as bifurcation parameter. Through the phase analysis and explicit expressions of some nonlinear waves, we reveal two kinds of important bifurcation phenomena. The first phenomenon is that the solitary waves with fractional expressions can be bifurcated from three types of nonlinear waves which are solitary waves with hyperbolic expression and two types of periodic waves with elliptic expression and trigonometric expression respectively. The second phenomenon is that the kink waves can be bifurcated from the solitary waves and the singular waves.
Citation: Yiren Chen, Zhengrong Liu. The bifurcations of solitary and kink waves described by the Gardner equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1629-1645. doi: 10.3934/dcdss.2016067
References:
[1]

G. Betchewe, K. K. Victor, B. B. Thomas and K. T. Crepin, New solutions of the Gardner equation: Analytical and numerical analysis of its dynamical understanding,, Appl. Math. Comput., 223 (2013), 377. doi: 10.1016/j.amc.2013.08.028. Google Scholar

[2]

A. Biswas and M. Song, Soliton solution and bifurcation analysis of the Zakharov-Kuznetsov-Benjamin-Bona-Mahoney equation with power law nonlinearity,, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 1676. doi: 10.1016/j.cnsns.2012.11.014. Google Scholar

[3]

Y. R. Chen and R. Liu, Some new nonlinear wave solutions for two (3+1)-dimensional equations,, Appl. Math. Comput., 260 (2015), 397. doi: 10.1016/j.amc.2015.03.098. Google Scholar

[4]

M. W. Coffey, On series expansions giving closed-form solutions of Korteweg-de Vries-like equations,, SIAM J. Appl. Math., 50 (1990), 1580. doi: 10.1137/0150093. Google Scholar

[5]

Z. Fu, S. Liu and S. Liu, New kinds of solutions to Gardner equation,, Chaos Soliton. Fract., 20 (2004), 301. doi: 10.1016/S0960-0779(03)00383-7. Google Scholar

[6]

R. Grimshaw, D. Pelinovsky, E. Pelinovsky and A. Slunyaev, Generation of large-amplitude solitons in the extended Korteweg-de Vries equation,, Chaos, 12 (2002), 1070. doi: 10.1063/1.1521391. Google Scholar

[7]

R. Grimshawa, D. Pelinovsky, E. Pelinovsky and T. Talipova, Wave group dynamics in weakly nonlinear long-wave models,, Physica D, 159 (2001), 35. doi: 10.1016/S0167-2789(01)00333-5. Google Scholar

[8]

R. Grimshaw, A. Slunyaev and E. Pelinovsky, Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity,, Chaos, 20 (2010). doi: 10.1063/1.3279480. Google Scholar

[9]

K. Konno and Y. H. Ichikawa, A modified Korteweg de Vries equation for ion acoustic waves,, J. Phys. Soc. Jpn., 37 (1974), 1631. doi: 10.1143/JPSJ.37.1631. Google Scholar

[10]

S. Liu, Z. Fu, S. Liu and Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations,, Phys. Lett. A, 289 (2001), 69. doi: 10.1016/S0375-9601(01)00580-1. Google Scholar

[11]

R. Liu and W. F. Yan, Some common expressions and new bifurcation phenomena for nonlinear waves in a generalized mKdV equation,, Int. J. Bifurcat. Chaos, 23 (2013). doi: 10.1142/S0218127413300073. Google Scholar

[12]

Y. Long, W. G. Rui and B. He, Travelling wave solutions for a higher order wave equations of KdV type (I),, Chaos Soliton. Fract., 23 (2005), 469. doi: 10.1016/j.chaos.2004.04.027. Google Scholar

[13]

S. Y. Lou and L. L. Chen, Solitary wave solutions and cnoidal wave solutions to the combined KdV and mKdV equation,, Math. Meth. Appl. Sci., 17 (1994), 339. doi: 10.1002/mma.1670170503. Google Scholar

[14]

W. Mafliet and W. Hereman, The tanh method: I . Exact solutions of nonlinear evolution and wave equations,, Phys. Scr., 54 (1996), 563. doi: 10.1088/0031-8949/54/6/003. Google Scholar

[15]

R. M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation,, J. Math. Phys., 9 (1968), 1202. doi: 10.1063/1.1664700. Google Scholar

[16]

R. M. Miura, C. S. Gardner and M. D. Kruskal, Korteweg-de vries equation and generalizations. II. existence of conservation laws and constants of motion,, J. Math. Phys., 9 (1968), 1204. doi: 10.1063/1.1664701. Google Scholar

[17]

A. C. Newell, Solitons in Mathematics and Physics,, SIAM, (1985). doi: 10.1137/1.9781611970227. Google Scholar

[18]

A. Saha, B. Talukdar and S. Chatterjee, Dynamical systems theory for the Gardner equation,, Phys. Rev. E, 89 (2014). doi: 10.1103/PhysRevE.89.023204. Google Scholar

[19]

M. Song, B. S. Ahmed, E. Zerrad and A. Biswas, Domain wall and bifurcation analysis of the Klein-Gordon Zakharov equation in (1 + 2)-dimensions with power law nonlinearity,, Chaos, 23 (2013). doi: 10.1063/1.4816346. Google Scholar

[20]

M. Wadati, Wave propagation in nonlinear lattice. I,, J. Phys. Soc. Jpn., 38 (1975), 673. doi: 10.1143/JPSJ.38.673. Google Scholar

[21]

M. Wadati, Wave propagation in nonlinear lattice. II,, J. Phys. Soc. Jpn., 38 (1975), 681. doi: 10.1143/JPSJ.38.673. Google Scholar

[22]

A. M. Wazwaz, The extended tanh method for abundant solitary wave solutions of nonlinear wave equations,, Appl. Math. Comput., 187 (2007), 1131. doi: 10.1016/j.amc.2006.09.013. Google Scholar

[23]

J. F. Zhang, New solitary wave solution of the combined KdV and mKdV equation,, Int. J. Theor. Phys., 37 (1998), 1541. doi: 10.1023/A:1026615919186. Google Scholar

show all references

References:
[1]

G. Betchewe, K. K. Victor, B. B. Thomas and K. T. Crepin, New solutions of the Gardner equation: Analytical and numerical analysis of its dynamical understanding,, Appl. Math. Comput., 223 (2013), 377. doi: 10.1016/j.amc.2013.08.028. Google Scholar

[2]

A. Biswas and M. Song, Soliton solution and bifurcation analysis of the Zakharov-Kuznetsov-Benjamin-Bona-Mahoney equation with power law nonlinearity,, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 1676. doi: 10.1016/j.cnsns.2012.11.014. Google Scholar

[3]

Y. R. Chen and R. Liu, Some new nonlinear wave solutions for two (3+1)-dimensional equations,, Appl. Math. Comput., 260 (2015), 397. doi: 10.1016/j.amc.2015.03.098. Google Scholar

[4]

M. W. Coffey, On series expansions giving closed-form solutions of Korteweg-de Vries-like equations,, SIAM J. Appl. Math., 50 (1990), 1580. doi: 10.1137/0150093. Google Scholar

[5]

Z. Fu, S. Liu and S. Liu, New kinds of solutions to Gardner equation,, Chaos Soliton. Fract., 20 (2004), 301. doi: 10.1016/S0960-0779(03)00383-7. Google Scholar

[6]

R. Grimshaw, D. Pelinovsky, E. Pelinovsky and A. Slunyaev, Generation of large-amplitude solitons in the extended Korteweg-de Vries equation,, Chaos, 12 (2002), 1070. doi: 10.1063/1.1521391. Google Scholar

[7]

R. Grimshawa, D. Pelinovsky, E. Pelinovsky and T. Talipova, Wave group dynamics in weakly nonlinear long-wave models,, Physica D, 159 (2001), 35. doi: 10.1016/S0167-2789(01)00333-5. Google Scholar

[8]

R. Grimshaw, A. Slunyaev and E. Pelinovsky, Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity,, Chaos, 20 (2010). doi: 10.1063/1.3279480. Google Scholar

[9]

K. Konno and Y. H. Ichikawa, A modified Korteweg de Vries equation for ion acoustic waves,, J. Phys. Soc. Jpn., 37 (1974), 1631. doi: 10.1143/JPSJ.37.1631. Google Scholar

[10]

S. Liu, Z. Fu, S. Liu and Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations,, Phys. Lett. A, 289 (2001), 69. doi: 10.1016/S0375-9601(01)00580-1. Google Scholar

[11]

R. Liu and W. F. Yan, Some common expressions and new bifurcation phenomena for nonlinear waves in a generalized mKdV equation,, Int. J. Bifurcat. Chaos, 23 (2013). doi: 10.1142/S0218127413300073. Google Scholar

[12]

Y. Long, W. G. Rui and B. He, Travelling wave solutions for a higher order wave equations of KdV type (I),, Chaos Soliton. Fract., 23 (2005), 469. doi: 10.1016/j.chaos.2004.04.027. Google Scholar

[13]

S. Y. Lou and L. L. Chen, Solitary wave solutions and cnoidal wave solutions to the combined KdV and mKdV equation,, Math. Meth. Appl. Sci., 17 (1994), 339. doi: 10.1002/mma.1670170503. Google Scholar

[14]

W. Mafliet and W. Hereman, The tanh method: I . Exact solutions of nonlinear evolution and wave equations,, Phys. Scr., 54 (1996), 563. doi: 10.1088/0031-8949/54/6/003. Google Scholar

[15]

R. M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation,, J. Math. Phys., 9 (1968), 1202. doi: 10.1063/1.1664700. Google Scholar

[16]

R. M. Miura, C. S. Gardner and M. D. Kruskal, Korteweg-de vries equation and generalizations. II. existence of conservation laws and constants of motion,, J. Math. Phys., 9 (1968), 1204. doi: 10.1063/1.1664701. Google Scholar

[17]

A. C. Newell, Solitons in Mathematics and Physics,, SIAM, (1985). doi: 10.1137/1.9781611970227. Google Scholar

[18]

A. Saha, B. Talukdar and S. Chatterjee, Dynamical systems theory for the Gardner equation,, Phys. Rev. E, 89 (2014). doi: 10.1103/PhysRevE.89.023204. Google Scholar

[19]

M. Song, B. S. Ahmed, E. Zerrad and A. Biswas, Domain wall and bifurcation analysis of the Klein-Gordon Zakharov equation in (1 + 2)-dimensions with power law nonlinearity,, Chaos, 23 (2013). doi: 10.1063/1.4816346. Google Scholar

[20]

M. Wadati, Wave propagation in nonlinear lattice. I,, J. Phys. Soc. Jpn., 38 (1975), 673. doi: 10.1143/JPSJ.38.673. Google Scholar

[21]

M. Wadati, Wave propagation in nonlinear lattice. II,, J. Phys. Soc. Jpn., 38 (1975), 681. doi: 10.1143/JPSJ.38.673. Google Scholar

[22]

A. M. Wazwaz, The extended tanh method for abundant solitary wave solutions of nonlinear wave equations,, Appl. Math. Comput., 187 (2007), 1131. doi: 10.1016/j.amc.2006.09.013. Google Scholar

[23]

J. F. Zhang, New solitary wave solution of the combined KdV and mKdV equation,, Int. J. Theor. Phys., 37 (1998), 1541. doi: 10.1023/A:1026615919186. Google Scholar

[1]

Anwar Ja'afar Mohamad Jawad, Mohammad Mirzazadeh, Anjan Biswas. Dynamics of shallow water waves with Gardner-Kadomtsev-Petviashvili equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1155-1164. doi: 10.3934/dcdss.2015.8.1155

[2]

Claudio Muñoz. The Gardner equation and the stability of multi-kink solutions of the mKdV equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3811-3843. doi: 10.3934/dcds.2016.36.3811

[3]

H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 709-717. doi: 10.3934/dcds.2004.10.709

[4]

Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244

[5]

Amin Esfahani, Steve Levandosky. Solitary waves of the rotation-generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 663-700. doi: 10.3934/dcds.2013.33.663

[6]

Steve Levandosky, Yue Liu. Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 793-806. doi: 10.3934/dcdsb.2007.7.793

[7]

Khaled El Dika. Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 583-622. doi: 10.3934/dcds.2005.13.583

[8]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[9]

José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051

[10]

Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313

[11]

Orlando Lopes. A linearized instability result for solitary waves. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 115-119. doi: 10.3934/dcds.2002.8.115

[12]

Emmanuel Hebey. Solitary waves in critical Abelian gauge theories. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1747-1761. doi: 10.3934/dcds.2012.32.1747

[13]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[14]

Yuanhong Wei, Yong Li, Xue Yang. On concentration of semi-classical solitary waves for a generalized Kadomtsev-Petviashvili equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1095-1106. doi: 10.3934/dcdss.2017059

[15]

José R. Quintero. Nonlinear stability of solitary waves for a 2-d Benney--Luke equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 203-218. doi: 10.3934/dcds.2005.13.203

[16]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[17]

Yuzo Hosono. Phase plane analysis of travelling waves for higher order autocatalytic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 115-125. doi: 10.3934/dcdsb.2007.8.115

[18]

Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007

[19]

Hung-Chu Hsu. Recovering surface profiles of solitary waves on a uniform stream from pressure measurements. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3035-3043. doi: 10.3934/dcds.2014.34.3035

[20]

Philippe Gravejat. Asymptotics of the solitary waves for the generalized Kadomtsev-Petviashvili equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 835-882. doi: 10.3934/dcds.2008.21.835

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]