• Previous Article
    The IDSA and the homogeneous sphere: Issues and possible improvements
  • DCDS-S Home
  • This Issue
  • Next Article
    A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift
October  2016, 9(5): 1377-1392. doi: 10.3934/dcdss.2016055

A posteriori error estimates for sequential laminates in shape optimization

1. 

Institut für Numerische Simulation, Rheinische Friedrich-Wilhelms-Universitat Bonn, Endenicher Allee 60, 53111 Bonn, Germany, Germany

Received  December 2014 Revised  July 2015 Published  October 2016

A posteriori error estimates are derived in the context of two-dimensional structural elastic shape optimization under the compliance objective. It is known that the optimal shape features are microstructures that can be constructed using sequential lamination. The descriptive parameters explicitly depend on the stress. To derive error estimates the dual weighted residual approach for control problems in PDE constrained optimization is employed, involving the elastic solution and the microstructure parameters. Rigorous estimation of interpolation errors ensures robustness of the estimates while local approximations are used to obtain fully practical error indicators. Numerical results show sharply resolved interfaces between regions of full and intermediate material density.
Citation: Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055
References:
[1]

G. Allaire, E. Bonnetier, G. Francfort and F. Jouve, Shape optimization by the homogenization method,, Numerische Mathematik, 76 (1997), 27. doi: 10.1007/s002110050253. Google Scholar

[2]

G. Allaire and R. V. Kohn, Optimal design for minimum weight and compliance in plane stress using extremal microstructures,, European J. Mech. A Solids, 12 (1993), 839. Google Scholar

[3]

G. Allaire and R. V. Kohn, Explicit optimal bounds on the elastic energy of a two-phase composite in two space dimensions,, Quart. Appl. Math., 51 (1993), 675. Google Scholar

[4]

G. Allaire, Shape Optimization by the Homogenization Method,, Applied Mathematical Sciences, (2002). doi: 10.1007/978-1-4684-9286-6. Google Scholar

[5]

M. Avellaneda, Optimal bounds and microgeometries for elastic two-phase composites,, SIAM J. Appl. Math., 47 (1987), 1216. doi: 10.1137/0147082. Google Scholar

[6]

G. Buttazzo and G. D. Maso, Shape optimization for dirichlet problems: Relaxed formulation and optimality conditions,, Applied Mathematics and Optimization, 23 (1991), 17. doi: 10.1007/BF01442391. Google Scholar

[7]

A. Braides and A. Defranceschi, Homogenization of Multiple Integrals,, Claredon Press, (1998). Google Scholar

[8]

M. P. Bendsøe, Optimization of Structural Topology, Shape, and Material,, Springer-Verlag, (1995). doi: 10.1007/978-3-662-03115-5. Google Scholar

[9]

R. Becker, E. Estecahandy and D. Trujillo, Weighted marking for goal-oriented adaptive finite element methods,, SIAM Journal on Numerical Analysis, 49 (2011), 2451. doi: 10.1137/100794298. Google Scholar

[10]

R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept,, SIAM J. Control Optim., 39 (2000), 113. doi: 10.1137/S0363012999351097. Google Scholar

[11]

C. Brandenburg, F. Lindemann, M. Ulbrich and S. Ulbrich, Advanced numerical methods for PDE constrained optimization with application to optimal design in Navier Stokes flow,, in Constrained Optimization and Optimal Control for Partial Differential Equations, (2012), 257. doi: 10.1007/978-3-0348-0133-1_14. Google Scholar

[12]

R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: Basic analysis and examples,, Computational Mechanics, 5 (1997), 434. Google Scholar

[13]

C. Barbarosie and A.-M. Toader, Shape and topology optimization for periodic problems. I. The shape and the topological derivative,, Struct. Multidiscip. Optim., 40 (2010), 381. doi: 10.1007/s00158-009-0378-0. Google Scholar

[14]

C. Barbarosie and A.-M. Toader, Shape and topology optimization for periodic problems. II. Optimization algorithm and numerical examples,, Struct. Multidiscip. Optim., 40 (2010), 393. doi: 10.1007/s00158-009-0377-1. Google Scholar

[15]

C Barbarosie and A.-M. Toader, Optimization of bodies with locally periodic microstructure,, Mechanics of Advanced Materials and Structures, 19 (2012), 290. doi: 10.1080/15376494.2011.642939. Google Scholar

[16]

O. Benedix and B. Vexler, A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints,, Computational Optimization and Applications, 44 (2009), 3. doi: 10.1007/s10589-008-9200-y. Google Scholar

[17]

D. Cioranescu and P. Donato, An Introduction to Homogenization,, Oxford University Press, (1999). Google Scholar

[18]

S. Conti, B. Geihe, M. Rumpf and R. Schultz, Two-stage stochastic optimization meets two-scale simulation,, in Trends in PDE Constrained Optimization. Part II, (2014), 193. doi: 10.1007/978-3-319-05083-6_13. Google Scholar

[19]

Ph. G. Ciarlet, The Finite Element Method for Elliptic Problems,, North-Holland Publishing Company, (1978). Google Scholar

[20]

W. Dörfler, A convergent adaptive algorithm for poisson's equation,, SIAM J. Numer. Anal., 33 (1996), 1106. doi: 10.1137/0733054. Google Scholar

[21]

W. E and B. Engquist, The heterogeneous multiscale methods,, Commun. Math. Sci., 1 (2003), 87. doi: 10.4310/CMS.2003.v1.n1.a8. Google Scholar

[22]

W. E and B. Engquist, The heterogeneous multi-scale method for homogenization problems,, in Multiscale Methods in Science and Engineering, (2005), 89. doi: 10.1007/3-540-26444-2_4. Google Scholar

[23]

W. E and B. Engquist and Z. Huang, Heterogeneous multiscale method: A general methodology for multiscale modeling,, Physical Review B, 67 (2003), 1. doi: 10.4310/CMS.2003.v1.n1.a8. Google Scholar

[24]

W. E, P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems,, J. Amer. Math. Soc., 18 (2005), 121. doi: 10.1090/S0894-0347-04-00469-2. Google Scholar

[25]

G. A. Francfort and F. Murat, Homogenization and optimal bounds in linear elasticity,, Arch. Rational Mech. Anal., 94 (1986), 307. doi: 10.1007/BF00280908. Google Scholar

[26]

L. V. Gibiansky and A. V. Cherkaev, Microstructures of composites of extremal rigidity and exact estimates of the associated energy density,, Ioffe Physicotechnical Institute, 1115 (1987). Google Scholar

[27]

Z. Hashin, The elastic moduli of heterogeneous materials,, Trans. ASME Ser. E. J. Appl. Mech., 29 (1962), 143. doi: 10.1115/1.3636446. Google Scholar

[28]

J. Haslinger, M. Kočvara, G. Leugering and M. Stingl, Multidisciplinary free material optimization,, SIAM Journal on Applied Mathematics, 70 (2010), 2709. doi: 10.1137/090774446. Google Scholar

[29]

P. Henning and M. Ohlberger, The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains,, Numerische Mathematik, 113 (2009), 601. doi: 10.1007/s00211-009-0244-4. Google Scholar

[30]

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials,, J. Mech. Phys. Solids, 11 (1963), 127. doi: 10.1016/0022-5096(63)90060-7. Google Scholar

[31]

A. J. Hoffman, H. W. Wielandt, The variation of the spectrum of a normal matrix,, Duke Math. J., 20 (1953), 37. doi: 10.1215/S0012-7094-53-02004-3. Google Scholar

[32]

F. Jouve and E. Bonnetier, Checkerboard instabilities in topological shape optimization algorithms,, Proceedings of the Conference on Inverse Problems, (1998). Google Scholar

[33]

V. V. Jikov, S. M. Kozlov and O. A. Oleĭnik, Homogenization of Differential Operators and Integral Functionals,, Springer-Verlag, (1994). doi: 10.1007/978-3-642-84659-5. Google Scholar

[34]

L. Kaland, The One-Shot Method: Function Space Analysis and Algorithmic Extension by Adaptivity,, RWTH Aachen, (2013). Google Scholar

[35]

L. Kaland, J. C. De Los Reyes and N. R. Gauger, One-shot methods in function space for PDE-constrained optimal control problems,, Optimization Methods and Software, 29 (2014), 376. doi: 10.1080/10556788.2013.774397. Google Scholar

[36]

R. V. Kohn and R. Lipton, Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials,, Arch. Rational Mech. Anal., 102 (1988), 331. doi: 10.1007/BF00251534. Google Scholar

[37]

P. Kogut and G. Leugering, Matrix-valued $L^1$-optimal controls in the coefficients of linear elliptic problems,, Z. Anal. Anwend., 32 (2013), 433. doi: 10.4171/ZAA/1493. Google Scholar

[38]

B. Kiniger and B. Vexler, A priori error estimates for finite element discretizations of a shape optimization problem,, ESAIM: Mathematical Modelling and Numerical Analysis, 47 (2013), 1733. doi: 10.1051/m2an/2013086. Google Scholar

[39]

K. A. Lurie and A. V. Cherkaev, Effective characteristics of composite materials and the optimal design of structural elements,, Adv. in Mech., 9 (1986), 3. Google Scholar

[40]

D. Leykekhman, D. Meidner and B. Vexler, Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints,, Computational Optimization and Applications, 55 (2013), 769. doi: 10.1007/s10589-013-9537-8. Google Scholar

[41]

P. Morin, R. H. Nochetto, M. S. Pauletti and M. Verani, Adaptive SQP method for shape optimization,, in Numerical Mathematics and Advanced Applications 2009, (2009), 663. doi: 10.1007/978-3-642-11795-4_71. Google Scholar

[42]

P. Morin, R. H. Nochetto, M. S. Pauletti, M. Verani, Adaptive finite element method for shape optimization,, ESAIM: Control, 18 (2012), 1122. doi: 10.1051/cocv/2011192. Google Scholar

[43]

F. Murat and L. Tartar, Calcul des variations et homogénéisation,, in Homogenization Methods: Theory and Applications in Physics (Bréau-sans-Nappe, (1983), 319. Google Scholar

[44]

M. Ohlberger, A posterior error estimates for the heterogenoeous mulitscale finite element method for elliptic homogenization problems,, SIAM Multiscale Mod. Simul., 4 (2005), 88. doi: 10.1137/040605229. Google Scholar

[45]

J. T. Oden and K. Vemaganti, Adaptive Modeling of Composite Structures: Modeling Error Estimation,, International Journal for Computational Civil and Structural Engineering, 1 (2000), 1. Google Scholar

[46]

J. T. Oden, K. S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms,, J. Comput. Phys., 164 (2000), 22. doi: 10.1006/jcph.2000.6585. Google Scholar

[47]

S. Prudhomme and J. T. Oden, On goal-oriented error estimation for elliptic problems: Application to the control of pointwise errors,, New advances in computational methods (Cachan, 176 (1999), 313. doi: 10.1016/S0045-7825(98)00343-0. Google Scholar

[48]

L. Tartar, Estimations fines des coefficients homogénéisés,, in Ennio De Giorgi colloquium (Paris, (1983), 168. Google Scholar

[49]

K. Vemaganti, Modelling error estimation and adaptive modelling of perforated materials,, Internat. J. Numer. Methods Engrg., 59 (2004), 1587. doi: 10.1002/nme.929. Google Scholar

[50]

B. Vexler and W. Wollner, Adaptive finite elements for elliptic optimization problems with control constraints,, SIAM Journal on Control and Optimization, 47 (2008), 509. doi: 10.1137/070683416. Google Scholar

[51]

W. Wollner, Goal-oriented adaptivity for optimization of elliptic systems subject to Pointwise inequality constraints: Application to free material optimization,, PAMM, 10 (2010), 669. doi: 10.1002/pamm.201010325. Google Scholar

show all references

References:
[1]

G. Allaire, E. Bonnetier, G. Francfort and F. Jouve, Shape optimization by the homogenization method,, Numerische Mathematik, 76 (1997), 27. doi: 10.1007/s002110050253. Google Scholar

[2]

G. Allaire and R. V. Kohn, Optimal design for minimum weight and compliance in plane stress using extremal microstructures,, European J. Mech. A Solids, 12 (1993), 839. Google Scholar

[3]

G. Allaire and R. V. Kohn, Explicit optimal bounds on the elastic energy of a two-phase composite in two space dimensions,, Quart. Appl. Math., 51 (1993), 675. Google Scholar

[4]

G. Allaire, Shape Optimization by the Homogenization Method,, Applied Mathematical Sciences, (2002). doi: 10.1007/978-1-4684-9286-6. Google Scholar

[5]

M. Avellaneda, Optimal bounds and microgeometries for elastic two-phase composites,, SIAM J. Appl. Math., 47 (1987), 1216. doi: 10.1137/0147082. Google Scholar

[6]

G. Buttazzo and G. D. Maso, Shape optimization for dirichlet problems: Relaxed formulation and optimality conditions,, Applied Mathematics and Optimization, 23 (1991), 17. doi: 10.1007/BF01442391. Google Scholar

[7]

A. Braides and A. Defranceschi, Homogenization of Multiple Integrals,, Claredon Press, (1998). Google Scholar

[8]

M. P. Bendsøe, Optimization of Structural Topology, Shape, and Material,, Springer-Verlag, (1995). doi: 10.1007/978-3-662-03115-5. Google Scholar

[9]

R. Becker, E. Estecahandy and D. Trujillo, Weighted marking for goal-oriented adaptive finite element methods,, SIAM Journal on Numerical Analysis, 49 (2011), 2451. doi: 10.1137/100794298. Google Scholar

[10]

R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept,, SIAM J. Control Optim., 39 (2000), 113. doi: 10.1137/S0363012999351097. Google Scholar

[11]

C. Brandenburg, F. Lindemann, M. Ulbrich and S. Ulbrich, Advanced numerical methods for PDE constrained optimization with application to optimal design in Navier Stokes flow,, in Constrained Optimization and Optimal Control for Partial Differential Equations, (2012), 257. doi: 10.1007/978-3-0348-0133-1_14. Google Scholar

[12]

R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: Basic analysis and examples,, Computational Mechanics, 5 (1997), 434. Google Scholar

[13]

C. Barbarosie and A.-M. Toader, Shape and topology optimization for periodic problems. I. The shape and the topological derivative,, Struct. Multidiscip. Optim., 40 (2010), 381. doi: 10.1007/s00158-009-0378-0. Google Scholar

[14]

C. Barbarosie and A.-M. Toader, Shape and topology optimization for periodic problems. II. Optimization algorithm and numerical examples,, Struct. Multidiscip. Optim., 40 (2010), 393. doi: 10.1007/s00158-009-0377-1. Google Scholar

[15]

C Barbarosie and A.-M. Toader, Optimization of bodies with locally periodic microstructure,, Mechanics of Advanced Materials and Structures, 19 (2012), 290. doi: 10.1080/15376494.2011.642939. Google Scholar

[16]

O. Benedix and B. Vexler, A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints,, Computational Optimization and Applications, 44 (2009), 3. doi: 10.1007/s10589-008-9200-y. Google Scholar

[17]

D. Cioranescu and P. Donato, An Introduction to Homogenization,, Oxford University Press, (1999). Google Scholar

[18]

S. Conti, B. Geihe, M. Rumpf and R. Schultz, Two-stage stochastic optimization meets two-scale simulation,, in Trends in PDE Constrained Optimization. Part II, (2014), 193. doi: 10.1007/978-3-319-05083-6_13. Google Scholar

[19]

Ph. G. Ciarlet, The Finite Element Method for Elliptic Problems,, North-Holland Publishing Company, (1978). Google Scholar

[20]

W. Dörfler, A convergent adaptive algorithm for poisson's equation,, SIAM J. Numer. Anal., 33 (1996), 1106. doi: 10.1137/0733054. Google Scholar

[21]

W. E and B. Engquist, The heterogeneous multiscale methods,, Commun. Math. Sci., 1 (2003), 87. doi: 10.4310/CMS.2003.v1.n1.a8. Google Scholar

[22]

W. E and B. Engquist, The heterogeneous multi-scale method for homogenization problems,, in Multiscale Methods in Science and Engineering, (2005), 89. doi: 10.1007/3-540-26444-2_4. Google Scholar

[23]

W. E and B. Engquist and Z. Huang, Heterogeneous multiscale method: A general methodology for multiscale modeling,, Physical Review B, 67 (2003), 1. doi: 10.4310/CMS.2003.v1.n1.a8. Google Scholar

[24]

W. E, P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems,, J. Amer. Math. Soc., 18 (2005), 121. doi: 10.1090/S0894-0347-04-00469-2. Google Scholar

[25]

G. A. Francfort and F. Murat, Homogenization and optimal bounds in linear elasticity,, Arch. Rational Mech. Anal., 94 (1986), 307. doi: 10.1007/BF00280908. Google Scholar

[26]

L. V. Gibiansky and A. V. Cherkaev, Microstructures of composites of extremal rigidity and exact estimates of the associated energy density,, Ioffe Physicotechnical Institute, 1115 (1987). Google Scholar

[27]

Z. Hashin, The elastic moduli of heterogeneous materials,, Trans. ASME Ser. E. J. Appl. Mech., 29 (1962), 143. doi: 10.1115/1.3636446. Google Scholar

[28]

J. Haslinger, M. Kočvara, G. Leugering and M. Stingl, Multidisciplinary free material optimization,, SIAM Journal on Applied Mathematics, 70 (2010), 2709. doi: 10.1137/090774446. Google Scholar

[29]

P. Henning and M. Ohlberger, The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains,, Numerische Mathematik, 113 (2009), 601. doi: 10.1007/s00211-009-0244-4. Google Scholar

[30]

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials,, J. Mech. Phys. Solids, 11 (1963), 127. doi: 10.1016/0022-5096(63)90060-7. Google Scholar

[31]

A. J. Hoffman, H. W. Wielandt, The variation of the spectrum of a normal matrix,, Duke Math. J., 20 (1953), 37. doi: 10.1215/S0012-7094-53-02004-3. Google Scholar

[32]

F. Jouve and E. Bonnetier, Checkerboard instabilities in topological shape optimization algorithms,, Proceedings of the Conference on Inverse Problems, (1998). Google Scholar

[33]

V. V. Jikov, S. M. Kozlov and O. A. Oleĭnik, Homogenization of Differential Operators and Integral Functionals,, Springer-Verlag, (1994). doi: 10.1007/978-3-642-84659-5. Google Scholar

[34]

L. Kaland, The One-Shot Method: Function Space Analysis and Algorithmic Extension by Adaptivity,, RWTH Aachen, (2013). Google Scholar

[35]

L. Kaland, J. C. De Los Reyes and N. R. Gauger, One-shot methods in function space for PDE-constrained optimal control problems,, Optimization Methods and Software, 29 (2014), 376. doi: 10.1080/10556788.2013.774397. Google Scholar

[36]

R. V. Kohn and R. Lipton, Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials,, Arch. Rational Mech. Anal., 102 (1988), 331. doi: 10.1007/BF00251534. Google Scholar

[37]

P. Kogut and G. Leugering, Matrix-valued $L^1$-optimal controls in the coefficients of linear elliptic problems,, Z. Anal. Anwend., 32 (2013), 433. doi: 10.4171/ZAA/1493. Google Scholar

[38]

B. Kiniger and B. Vexler, A priori error estimates for finite element discretizations of a shape optimization problem,, ESAIM: Mathematical Modelling and Numerical Analysis, 47 (2013), 1733. doi: 10.1051/m2an/2013086. Google Scholar

[39]

K. A. Lurie and A. V. Cherkaev, Effective characteristics of composite materials and the optimal design of structural elements,, Adv. in Mech., 9 (1986), 3. Google Scholar

[40]

D. Leykekhman, D. Meidner and B. Vexler, Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints,, Computational Optimization and Applications, 55 (2013), 769. doi: 10.1007/s10589-013-9537-8. Google Scholar

[41]

P. Morin, R. H. Nochetto, M. S. Pauletti and M. Verani, Adaptive SQP method for shape optimization,, in Numerical Mathematics and Advanced Applications 2009, (2009), 663. doi: 10.1007/978-3-642-11795-4_71. Google Scholar

[42]

P. Morin, R. H. Nochetto, M. S. Pauletti, M. Verani, Adaptive finite element method for shape optimization,, ESAIM: Control, 18 (2012), 1122. doi: 10.1051/cocv/2011192. Google Scholar

[43]

F. Murat and L. Tartar, Calcul des variations et homogénéisation,, in Homogenization Methods: Theory and Applications in Physics (Bréau-sans-Nappe, (1983), 319. Google Scholar

[44]

M. Ohlberger, A posterior error estimates for the heterogenoeous mulitscale finite element method for elliptic homogenization problems,, SIAM Multiscale Mod. Simul., 4 (2005), 88. doi: 10.1137/040605229. Google Scholar

[45]

J. T. Oden and K. Vemaganti, Adaptive Modeling of Composite Structures: Modeling Error Estimation,, International Journal for Computational Civil and Structural Engineering, 1 (2000), 1. Google Scholar

[46]

J. T. Oden, K. S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms,, J. Comput. Phys., 164 (2000), 22. doi: 10.1006/jcph.2000.6585. Google Scholar

[47]

S. Prudhomme and J. T. Oden, On goal-oriented error estimation for elliptic problems: Application to the control of pointwise errors,, New advances in computational methods (Cachan, 176 (1999), 313. doi: 10.1016/S0045-7825(98)00343-0. Google Scholar

[48]

L. Tartar, Estimations fines des coefficients homogénéisés,, in Ennio De Giorgi colloquium (Paris, (1983), 168. Google Scholar

[49]

K. Vemaganti, Modelling error estimation and adaptive modelling of perforated materials,, Internat. J. Numer. Methods Engrg., 59 (2004), 1587. doi: 10.1002/nme.929. Google Scholar

[50]

B. Vexler and W. Wollner, Adaptive finite elements for elliptic optimization problems with control constraints,, SIAM Journal on Control and Optimization, 47 (2008), 509. doi: 10.1137/070683416. Google Scholar

[51]

W. Wollner, Goal-oriented adaptivity for optimization of elliptic systems subject to Pointwise inequality constraints: Application to free material optimization,, PAMM, 10 (2010), 669. doi: 10.1002/pamm.201010325. Google Scholar

[1]

Afaf Bouharguane, Pascal Azerad, Frédéric Bouchette, Fabien Marche, Bijan Mohammadi. Low complexity shape optimization & a posteriori high fidelity validation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 759-772. doi: 10.3934/dcdsb.2010.13.759

[2]

Lekbir Afraites, Marc Dambrine, Karsten Eppler, Djalil Kateb. Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 389-416. doi: 10.3934/dcdsb.2007.8.389

[3]

Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations & Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011

[4]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[5]

Thomas Apel, Mariano Mateos, Johannes Pfefferer, Arnd Rösch. Error estimates for Dirichlet control problems in polygonal domains: Quasi-uniform meshes. Mathematical Control & Related Fields, 2018, 8 (1) : 217-245. doi: 10.3934/mcrf.2018010

[6]

Günter Leugering, Jan Sokołowski, Antoni Żochowski. Control of crack propagation by shape-topological optimization. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2625-2657. doi: 10.3934/dcds.2015.35.2625

[7]

Markus Muhr, Vanja Nikolić, Barbara Wohlmuth, Linus Wunderlich. Isogeometric shape optimization for nonlinear ultrasound focusing. Evolution Equations & Control Theory, 2019, 8 (1) : 163-202. doi: 10.3934/eect.2019010

[8]

Svetlana Matculevich, Pekka Neittaanmäki, Sergey Repin. A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne--Weinberger inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2659-2677. doi: 10.3934/dcds.2015.35.2659

[9]

David Russell. Structural parameter optimization of linear elastic systems. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1517-1536. doi: 10.3934/cpaa.2011.10.1517

[10]

Zhongliang Deng, Enwen Hu. Error minimization with global optimization for difference of convex functions. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1027-1033. doi: 10.3934/dcdss.2019070

[11]

Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

[12]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[13]

Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069

[14]

Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations & Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331

[15]

Wen-ling Zhao, Dao-jin Song. A global error bound via the SQP method for constrained optimization problem. Journal of Industrial & Management Optimization, 2007, 3 (4) : 775-781. doi: 10.3934/jimo.2007.3.775

[16]

Walter Allegretto, Yanping Lin, Ningning Yan. A posteriori error analysis for FEM of American options. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 957-978. doi: 10.3934/dcdsb.2006.6.957

[17]

Wolf-Jürgen Beyn, Raphael Kruse. Two-sided error estimates for the stochastic theta method. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 389-407. doi: 10.3934/dcdsb.2010.14.389

[18]

Alexander Mielke, Sina Reichelt, Marita Thomas. Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks & Heterogeneous Media, 2014, 9 (2) : 353-382. doi: 10.3934/nhm.2014.9.353

[19]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[20]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 223-250. doi: 10.3934/naco.2017016

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]