• Previous Article
    Null controllable sets and reachable sets for nonautonomous linear control systems
  • DCDS-S Home
  • This Issue
  • Next Article
    Normal forms à la Moser for aperiodically time-dependent Hamiltonians in the vicinity of a hyperbolic equilibrium
August  2016, 9(4): 1095-1107. doi: 10.3934/dcdss.2016043

A note on the fractalization of saddle invariant curves in quasiperiodic systems

1. 

Department of Mathematics, Uppsala University, Box 480, 75106 Uppsala

2. 

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona

Received  November 2015 Revised  April 2016 Published  August 2016

The purpose of this paper is to describe a new mechanism of destruction of saddle invariant curves in quasiperiodically forced systems, in which an invariant curve experiments a process of fractalization, that is, the curve gets increasingly wrinkled until it breaks down. The phenomenon resembles the one described for attracting invariant curves in a number of quasiperiodically forced dissipative systems, and that has received the attention in the literature for its connections with the so-called Strange Non-Chaotic Attractors. We present a general conceptual framework that provides a simple unifying mathematical picture for fractalization routes in dissipative and conservative systems.
Citation: Jordi-Lluís Figueras, Àlex Haro. A note on the fractalization of saddle invariant curves in quasiperiodic systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1095-1107. doi: 10.3934/dcdss.2016043
References:
[1]

A. Avila and R. Krikorian, Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles,, Ann. of Math. (2), 164 (2006), 911. doi: 10.4007/annals.2006.164.911.

[2]

H. Broer, G. Huitema, F. Takens and B. Braaksma, Unfoldings and bifurcations of quasi-periodic tori,, Mem. Am. Math. Soc., 83 (1990). doi: 10.1090/memo/0421.

[3]

M. Canadell, J.-L. Figueras, A. Haro, A. Luque and J.-M. Mondelo, The Parameterization Method for Invariant Manifolds: From Rigorous Results to Effective Computations,, Applied Mathematical Sciences. Springer-Verlag, (2016). doi: 10.1007/978-3-319-29662-3.

[4]

M. Canadell and A. Haro, A KAM-like theorem for quasi-periodic normally hyperbolic invariant tori., Preprint, (2015).

[5]

C. Chicone and Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, volume 70 of Mathematical Surveys and Monographs,, American Mathematical Society, (1999). doi: 10.1090/surv/070.

[6]

C. Chicone and R. C. Swanson, Spectral theory for linearizations of dynamical systems,, J. Differential Equations, 40 (1981), 155. doi: 10.1016/0022-0396(81)90015-2.

[7]

M.-C. Ciocci, A. Litvak-Hinenzon and H. Broer, Survey on dissipative {KAM} theory including quasi-periodic bifurcation theory),, In Geometric mechanics and symmetry, (2005), 303. doi: 10.1017/CBO9780511526367.006.

[8]

S. Datta, R. Ramaswamy and A. Prasad, Fractalization route to strange nonchaotic dynamics,, Phys. Rev. E, 70 (2004). doi: 10.1103/PhysRevE.70.046203.

[9]

E. I. Dinaburg and J. G. Sinaĭ, The one-dimensional Schrödinger equation with quasiperiodic potential,, Funkcional. Anal. i Priložen., 9 (1975), 8.

[10]

L. H. Eliasson, Floquet solutions for the $1$-dimensional quasi-periodic Schrödinger equation,, Comm. Math. Phys., 146 (1992), 447. doi: 10.1007/BF02097013.

[11]

J.-L. Figueras, Fiberwise Hyperbolic Invariant Tori in Quasiperiodically Skew Product Systems,, PhD thesis, (2011).

[12]

J.-L. Figueras and A. Haro, Reliable computation of robust response tori on the verge of breakdown,, SIAM J. Appl. Dyn. Syst., 11 (2012), 597. doi: 10.1137/100809222.

[13]

J.-L. Figueras and À. Haro, Triple collisions of invariant bundles,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2069. doi: 10.3934/dcdsb.2013.18.2069.

[14]

J.-L. Figueras and À. Haro., Different scenarions for hyperbolicity in quasiperiodic area preserving twist maps,, Chaos, 25 (2015). doi: 10.1063/1.4938185.

[15]

C. Grebogi, E. Ott, S. Pelikan and J. Yorke, Strange attractors that are not chaotic,, Phys. D, 13 (1984), 261. doi: 10.1016/0167-2789(84)90282-3.

[16]

J. M. Greene, A method for determining a stochastic transition,, J. Math. Phys., 20 (1979), 1183. doi: 10.1063/1.524170.

[17]

A. Haro and R. de la Llave, Spectral theory and dynamical systems,, , ().

[18]

A. Haro and R. de la Llave, Manifolds on the verge of a hyperbolicity breakdown,, Chaos, 16 (2006). doi: 10.1063/1.2150947.

[19]

A. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: numerical algorithms,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1261. doi: 10.3934/dcdsb.2006.6.1261.

[20]

A. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Rigorous results,, J. Differential Equations, 228 (2006), 530. doi: 10.1016/j.jde.2005.10.005.

[21]

A. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Explorations and mechanisms for the breakdown of hyperbolicity,, SIAM J. Appl. Dyn. Syst., 6 (2007), 142. doi: 10.1137/050637327.

[22]

À. Haro and J. Puig, Strange nonchaotic attractors in Harper maps,, Chaos, 16 (2006). doi: 10.1063/1.2259821.

[23]

A. Haro and C. Simó, To be or not to be a SNA: That is the question,, Preprint, (2005).

[24]

M.-R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnol'd et de Moser sur le tore de dimension 2,, Comment. Math. Helv., 58 (1983), 453. doi: 10.1007/BF02564647.

[25]

R. Johnson, Analyticity of spectral subbundles,, J. Differential Equations, 35 (1980), 366. doi: 10.1016/0022-0396(80)90034-0.

[26]

R. Johnson and G. Sell, Smoothness of spectral subbundles and reducibility of quasiperiodic linear differential systems,, J. Differential Equations, 41 (1981), 262. doi: 10.1016/0022-0396(81)90062-0.

[27]

R. A. Johnson, The Oseledec and Sacker-Sell spectra for almost periodic linear systems: An example,, Proc. Amer. Math. Soc., 99 (1987), 261. doi: 10.1090/S0002-9939-1987-0870782-7.

[28]

À. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients,, J. Differential Equations, 98 (1992), 111. doi: 10.1016/0022-0396(92)90107-X.

[29]

A. Jorba and J. C. Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537. doi: 10.3934/dcdsb.2008.10.537.

[30]

À. Jorba, J. C. Tatjer, C. Núñez and R. Obaya, Old and new results on strange nonchaotic attractors,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 3895. doi: 10.1142/S0218127407019780.

[31]

K. Kaneko, Fractalization of torus,, Progr. Theoret. Phys., 71 (1984), 1112. doi: 10.1143/PTP.71.1112.

[32]

K. Kaneko, Collapse of Tori and Genesis of Chaos in Dissipative Systems,, World Scientific Publishing Co., (1986). doi: 10.1142/0175.

[33]

J. N. Mather, Characterization of Anosov diffeomorphisms,, Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math., 30 (1968), 479.

[34]

T. Nishikawa and K. Kaneko., Fractalization of a torus as a strange nonchaotic attractor,, Phys. Rev. E, 54 (1996), 6114. doi: 10.1103/PhysRevE.54.6114.

[35]

R. J. Sacker and G. R. Sell, Existence of dichotomies and invariant splittings for linear differential systems. I,, J. Differential Equations, 15 (1974), 429. doi: 10.1016/0022-0396(74)90067-9.

[36]

R. J. Sacker and G. R. Sell, A spectral theory for linear almost periodic differential equations,, In International Conference on Differential Equations (Proc., (1974), 698.

[37]

O. Sosnovtseva, U. Feudel, J. Kurths and A. Pikovsky, Multiband strange nonchaotic attractors in quasiperiodically forced systems,, Physics Letters A, 218 (1996), 255. doi: 10.1016/0375-9601(96)00399-4.

[38]

J. Stark, Invariant graphs for forced systems,, Phys. D, 109 (1997), 163. doi: 10.1016/S0167-2789(97)00167-X.

[39]

J. Stark, Regularity of invariant graphs for forced systems,, Ergodic Theory Dynam. Systems, 19 (1999), 155. doi: 10.1017/S0143385799126555.

[40]

R. Vitolo, H. Broer and C. Simó, Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems,, Regul. Chaotic Dyn., 16 (2011), 154. doi: 10.1134/S1560354711010060.

show all references

References:
[1]

A. Avila and R. Krikorian, Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles,, Ann. of Math. (2), 164 (2006), 911. doi: 10.4007/annals.2006.164.911.

[2]

H. Broer, G. Huitema, F. Takens and B. Braaksma, Unfoldings and bifurcations of quasi-periodic tori,, Mem. Am. Math. Soc., 83 (1990). doi: 10.1090/memo/0421.

[3]

M. Canadell, J.-L. Figueras, A. Haro, A. Luque and J.-M. Mondelo, The Parameterization Method for Invariant Manifolds: From Rigorous Results to Effective Computations,, Applied Mathematical Sciences. Springer-Verlag, (2016). doi: 10.1007/978-3-319-29662-3.

[4]

M. Canadell and A. Haro, A KAM-like theorem for quasi-periodic normally hyperbolic invariant tori., Preprint, (2015).

[5]

C. Chicone and Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, volume 70 of Mathematical Surveys and Monographs,, American Mathematical Society, (1999). doi: 10.1090/surv/070.

[6]

C. Chicone and R. C. Swanson, Spectral theory for linearizations of dynamical systems,, J. Differential Equations, 40 (1981), 155. doi: 10.1016/0022-0396(81)90015-2.

[7]

M.-C. Ciocci, A. Litvak-Hinenzon and H. Broer, Survey on dissipative {KAM} theory including quasi-periodic bifurcation theory),, In Geometric mechanics and symmetry, (2005), 303. doi: 10.1017/CBO9780511526367.006.

[8]

S. Datta, R. Ramaswamy and A. Prasad, Fractalization route to strange nonchaotic dynamics,, Phys. Rev. E, 70 (2004). doi: 10.1103/PhysRevE.70.046203.

[9]

E. I. Dinaburg and J. G. Sinaĭ, The one-dimensional Schrödinger equation with quasiperiodic potential,, Funkcional. Anal. i Priložen., 9 (1975), 8.

[10]

L. H. Eliasson, Floquet solutions for the $1$-dimensional quasi-periodic Schrödinger equation,, Comm. Math. Phys., 146 (1992), 447. doi: 10.1007/BF02097013.

[11]

J.-L. Figueras, Fiberwise Hyperbolic Invariant Tori in Quasiperiodically Skew Product Systems,, PhD thesis, (2011).

[12]

J.-L. Figueras and A. Haro, Reliable computation of robust response tori on the verge of breakdown,, SIAM J. Appl. Dyn. Syst., 11 (2012), 597. doi: 10.1137/100809222.

[13]

J.-L. Figueras and À. Haro, Triple collisions of invariant bundles,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2069. doi: 10.3934/dcdsb.2013.18.2069.

[14]

J.-L. Figueras and À. Haro., Different scenarions for hyperbolicity in quasiperiodic area preserving twist maps,, Chaos, 25 (2015). doi: 10.1063/1.4938185.

[15]

C. Grebogi, E. Ott, S. Pelikan and J. Yorke, Strange attractors that are not chaotic,, Phys. D, 13 (1984), 261. doi: 10.1016/0167-2789(84)90282-3.

[16]

J. M. Greene, A method for determining a stochastic transition,, J. Math. Phys., 20 (1979), 1183. doi: 10.1063/1.524170.

[17]

A. Haro and R. de la Llave, Spectral theory and dynamical systems,, , ().

[18]

A. Haro and R. de la Llave, Manifolds on the verge of a hyperbolicity breakdown,, Chaos, 16 (2006). doi: 10.1063/1.2150947.

[19]

A. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: numerical algorithms,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1261. doi: 10.3934/dcdsb.2006.6.1261.

[20]

A. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Rigorous results,, J. Differential Equations, 228 (2006), 530. doi: 10.1016/j.jde.2005.10.005.

[21]

A. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Explorations and mechanisms for the breakdown of hyperbolicity,, SIAM J. Appl. Dyn. Syst., 6 (2007), 142. doi: 10.1137/050637327.

[22]

À. Haro and J. Puig, Strange nonchaotic attractors in Harper maps,, Chaos, 16 (2006). doi: 10.1063/1.2259821.

[23]

A. Haro and C. Simó, To be or not to be a SNA: That is the question,, Preprint, (2005).

[24]

M.-R. Herman, Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnol'd et de Moser sur le tore de dimension 2,, Comment. Math. Helv., 58 (1983), 453. doi: 10.1007/BF02564647.

[25]

R. Johnson, Analyticity of spectral subbundles,, J. Differential Equations, 35 (1980), 366. doi: 10.1016/0022-0396(80)90034-0.

[26]

R. Johnson and G. Sell, Smoothness of spectral subbundles and reducibility of quasiperiodic linear differential systems,, J. Differential Equations, 41 (1981), 262. doi: 10.1016/0022-0396(81)90062-0.

[27]

R. A. Johnson, The Oseledec and Sacker-Sell spectra for almost periodic linear systems: An example,, Proc. Amer. Math. Soc., 99 (1987), 261. doi: 10.1090/S0002-9939-1987-0870782-7.

[28]

À. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients,, J. Differential Equations, 98 (1992), 111. doi: 10.1016/0022-0396(92)90107-X.

[29]

A. Jorba and J. C. Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537. doi: 10.3934/dcdsb.2008.10.537.

[30]

À. Jorba, J. C. Tatjer, C. Núñez and R. Obaya, Old and new results on strange nonchaotic attractors,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 3895. doi: 10.1142/S0218127407019780.

[31]

K. Kaneko, Fractalization of torus,, Progr. Theoret. Phys., 71 (1984), 1112. doi: 10.1143/PTP.71.1112.

[32]

K. Kaneko, Collapse of Tori and Genesis of Chaos in Dissipative Systems,, World Scientific Publishing Co., (1986). doi: 10.1142/0175.

[33]

J. N. Mather, Characterization of Anosov diffeomorphisms,, Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math., 30 (1968), 479.

[34]

T. Nishikawa and K. Kaneko., Fractalization of a torus as a strange nonchaotic attractor,, Phys. Rev. E, 54 (1996), 6114. doi: 10.1103/PhysRevE.54.6114.

[35]

R. J. Sacker and G. R. Sell, Existence of dichotomies and invariant splittings for linear differential systems. I,, J. Differential Equations, 15 (1974), 429. doi: 10.1016/0022-0396(74)90067-9.

[36]

R. J. Sacker and G. R. Sell, A spectral theory for linear almost periodic differential equations,, In International Conference on Differential Equations (Proc., (1974), 698.

[37]

O. Sosnovtseva, U. Feudel, J. Kurths and A. Pikovsky, Multiband strange nonchaotic attractors in quasiperiodically forced systems,, Physics Letters A, 218 (1996), 255. doi: 10.1016/0375-9601(96)00399-4.

[38]

J. Stark, Invariant graphs for forced systems,, Phys. D, 109 (1997), 163. doi: 10.1016/S0167-2789(97)00167-X.

[39]

J. Stark, Regularity of invariant graphs for forced systems,, Ergodic Theory Dynam. Systems, 19 (1999), 155. doi: 10.1017/S0143385799126555.

[40]

R. Vitolo, H. Broer and C. Simó, Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems,, Regul. Chaotic Dyn., 16 (2011), 154. doi: 10.1134/S1560354711010060.

[1]

Stefano Marò. Relativistic pendulum and invariant curves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1139-1162. doi: 10.3934/dcds.2015.35.1139

[2]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[3]

Leonardo Mora. Homoclinic bifurcations, fat attractors and invariant curves. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1133-1148. doi: 10.3934/dcds.2003.9.1133

[4]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[5]

Libin Wang. Breakdown of $C^1$ solution to the Cauchy problem for quasilinear hyperbolic systems with characteristics with constant multiplicity. Communications on Pure & Applied Analysis, 2003, 2 (1) : 77-89. doi: 10.3934/cpaa.2003.2.77

[6]

Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785

[7]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[8]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[9]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[10]

Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755

[11]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[12]

W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351

[13]

Victoriano Carmona, Soledad Fernández-García, Antonio E. Teruel. Saddle-node of limit cycles in planar piecewise linear systems and applications. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5275-5299. doi: 10.3934/dcds.2019215

[14]

Francesca Alessio, Piero Montecchiari, Andrea Sfecci. Saddle solutions for a class of systems of periodic and reversible semilinear elliptic equations. Networks & Heterogeneous Media, 2019, 14 (3) : 567-587. doi: 10.3934/nhm.2019022

[15]

Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639

[16]

Àngel Jorba, Joan Carles Tatjer. A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 537-567. doi: 10.3934/dcdsb.2008.10.537

[17]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[18]

Magdalena Caubergh, Freddy Dumortier, Stijn Luca. Cyclicity of unbounded semi-hyperbolic 2-saddle cycles in polynomial Lienard systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 963-980. doi: 10.3934/dcds.2010.27.963

[19]

Miguel Ângelo De Sousa Mendes. Quasi-invariant attractors of piecewise isometric systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 323-338. doi: 10.3934/dcds.2003.9.323

[20]

Fuzhong Cong, Yong Li. Invariant hyperbolic tori for Hamiltonian systems with degeneracy. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 371-382. doi: 10.3934/dcds.1997.3.371

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]