August  2016, 9(4): 895-922. doi: 10.3934/dcdss.2016034

Blue sky-like catastrophe for reversible nonlinear implicit ODEs

1. 

Department of Industrial Engeneering and Mathematics, Marche Polytecnic University, Ancona, Italy

2. 

Department of Mathematical Analysis and Numerical Mathematics, Comenius University, Mlynská dolina, 842 48 Bratislava

Received  March 2015 Revised  June 2015 Published  August 2016

We study for reversible implicit differential equations the bifurcation of bounded solutions connecting singularities in finite time and their approximation by shadowed periodic solutions. Melnikov like condition is derived. Application is given to planar nonlinear RLC system.
Citation: Flaviano Battelli, Michal Fečkan. Blue sky-like catastrophe for reversible nonlinear implicit ODEs. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 895-922. doi: 10.3934/dcdss.2016034
References:
[1]

F. Battelli and M. Fečkan, Melnikov theory for nonlinear implicit ODEs,, J. Differential Equations, 256 (2014), 1157. doi: 10.1016/j.jde.2013.10.012.

[2]

________, Nonlinear RLC circuits and implicit ODEs,, Differential Integral Equations, 27 (2014), 671.

[3]

________, Melnikov theory for weakly coupled nonlinear RLC circuits},, Bound. Value Probl., 2014 (2014). doi: 10.1186/1687-2770-2014-101.

[4]

A. W. Coppel, Dichotomies in Stability Theory,, Lecture Notes in Math., 629 (1978).

[5]

R. Devaney, Blue sky catastrophes in reversible and Hamiltonian systems,, Indiana Univ. Math. J., 26 (1977), 247. doi: 10.1512/iumj.1977.26.26018.

[6]

M. C. Irwin, On the smoothness of the composition map,, Quart. J. Math. Oxford Ser. (2), 23 (1971), 113. doi: 10.1093/qmath/23.2.113.

[7]

E. Kreyszig, Introductory Functional Analysis with Applications,, John Wiley & Sons, (1989).

[8]

X. B. Lin, Using Melnikov's method to solve Shilnikov's problems,, Proc. Royal Soc. Edinburgh A, 116 (1990), 295. doi: 10.1017/S0308210500031528.

[9]

K. J. Palmer, Transversal heteroclinic points and Cherry's example of a nonintegrable Hamiltonian system,, J. Differential Equations, 65 (1986), 321. doi: 10.1016/0022-0396(86)90023-9.

[10]

P. J. Rabier and W. C. Rheinboldt, A general existence and uniqueness theorem for implicit differential algebraic equations,, Differential Integral Equations, 4 (1991), 563.

[11]

________, A geometric treatment of implicit differential-algebraic equations,, J. Differential Equations, 109 (1994), 110. doi: 10.1006/jdeq.1994.1046.

[12]

________, On impasse points of quasilinear differential algebraic equations,, J. Math. Anal. Appl., 181 (1994), 429. doi: 10.1006/jmaa.1994.1033.

[13]

________, On the computation of impasse points of quasilinear differential algebraic equations,, Math. Comp., 62 (1994), 133. doi: 10.2307/2153400.

[14]

R. Riaza, Differential-Algebraic Systems, Analytical Aspects and Circuit Applications,, World Sci. Publ. Co. Pte. Ltd., (2008).

[15]

A. Vanderbauwhede, Heteroclinic cycles and periodic orbits in reversible systems,, in Ordinary and Delay Differential Equations, 272 (1992), 250.

[16]

A. Vanderbauwhede and B. Fiedler, Homoclinic period blow-up in reversible and conservative systems,, Z. Angew. Math. Phys. (ZAMP), 43 (1992), 292. doi: 10.1007/BF00946632.

show all references

References:
[1]

F. Battelli and M. Fečkan, Melnikov theory for nonlinear implicit ODEs,, J. Differential Equations, 256 (2014), 1157. doi: 10.1016/j.jde.2013.10.012.

[2]

________, Nonlinear RLC circuits and implicit ODEs,, Differential Integral Equations, 27 (2014), 671.

[3]

________, Melnikov theory for weakly coupled nonlinear RLC circuits},, Bound. Value Probl., 2014 (2014). doi: 10.1186/1687-2770-2014-101.

[4]

A. W. Coppel, Dichotomies in Stability Theory,, Lecture Notes in Math., 629 (1978).

[5]

R. Devaney, Blue sky catastrophes in reversible and Hamiltonian systems,, Indiana Univ. Math. J., 26 (1977), 247. doi: 10.1512/iumj.1977.26.26018.

[6]

M. C. Irwin, On the smoothness of the composition map,, Quart. J. Math. Oxford Ser. (2), 23 (1971), 113. doi: 10.1093/qmath/23.2.113.

[7]

E. Kreyszig, Introductory Functional Analysis with Applications,, John Wiley & Sons, (1989).

[8]

X. B. Lin, Using Melnikov's method to solve Shilnikov's problems,, Proc. Royal Soc. Edinburgh A, 116 (1990), 295. doi: 10.1017/S0308210500031528.

[9]

K. J. Palmer, Transversal heteroclinic points and Cherry's example of a nonintegrable Hamiltonian system,, J. Differential Equations, 65 (1986), 321. doi: 10.1016/0022-0396(86)90023-9.

[10]

P. J. Rabier and W. C. Rheinboldt, A general existence and uniqueness theorem for implicit differential algebraic equations,, Differential Integral Equations, 4 (1991), 563.

[11]

________, A geometric treatment of implicit differential-algebraic equations,, J. Differential Equations, 109 (1994), 110. doi: 10.1006/jdeq.1994.1046.

[12]

________, On impasse points of quasilinear differential algebraic equations,, J. Math. Anal. Appl., 181 (1994), 429. doi: 10.1006/jmaa.1994.1033.

[13]

________, On the computation of impasse points of quasilinear differential algebraic equations,, Math. Comp., 62 (1994), 133. doi: 10.2307/2153400.

[14]

R. Riaza, Differential-Algebraic Systems, Analytical Aspects and Circuit Applications,, World Sci. Publ. Co. Pte. Ltd., (2008).

[15]

A. Vanderbauwhede, Heteroclinic cycles and periodic orbits in reversible systems,, in Ordinary and Delay Differential Equations, 272 (1992), 250.

[16]

A. Vanderbauwhede and B. Fiedler, Homoclinic period blow-up in reversible and conservative systems,, Z. Angew. Math. Phys. (ZAMP), 43 (1992), 292. doi: 10.1007/BF00946632.

[1]

Kazuyuki Yagasaki. Application of the subharmonic Melnikov method to piecewise-smooth systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2189-2209. doi: 10.3934/dcds.2013.33.2189

[2]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[3]

Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373

[4]

Anita T. Layton, J. Thomas Beale. A partially implicit hybrid method for computing interface motion in Stokes flow. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1139-1153. doi: 10.3934/dcdsb.2012.17.1139

[5]

Ruijun Zhao, Yong-Tao Zhang, Shanqin Chen. Krylov implicit integration factor WENO method for SIR model with directed diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2019041

[6]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[7]

Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039

[8]

Tina Hartley, Thomas Wanner. A semi-implicit spectral method for stochastic nonlocal phase-field models. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 399-429. doi: 10.3934/dcds.2009.25.399

[9]

Xufeng Xiao, Xinlong Feng, Jinyun Yuan. The stabilized semi-implicit finite element method for the surface Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2857-2877. doi: 10.3934/dcdsb.2017154

[10]

Xiaofeng Yang. Error analysis of stabilized semi-implicit method of Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1057-1070. doi: 10.3934/dcdsb.2009.11.1057

[11]

Hector D. Ceniceros. A semi-implicit moving mesh method for the focusing nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2002, 1 (1) : 1-18. doi: 10.3934/cpaa.2002.1.1

[12]

Wenjuan Zhai, Bingzhen Chen. A fourth order implicit symmetric and symplectic exponentially fitted Runge-Kutta-Nyström method for solving oscillatory problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 71-84. doi: 10.3934/naco.2019006

[13]

Zainidin Eshkuvatov. Homotopy perturbation method and Chebyshev polynomials for solving a class of singular and hypersingular integral equations. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 337-350. doi: 10.3934/naco.2018022

[14]

Pavlos Xanthopoulos, Georgios E. Zouraris. A linearly implicit finite difference method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 239-263. doi: 10.3934/dcdsb.2008.10.239

[15]

Yulin Zhao, Siming Zhu. Higher order Melnikov function for a quartic hamiltonian with cuspidal loop. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 995-1018. doi: 10.3934/dcds.2002.8.995

[16]

Alexis De Vos, Yvan Van Rentergem. Young subgroups for reversible computers. Advances in Mathematics of Communications, 2008, 2 (2) : 183-200. doi: 10.3934/amc.2008.2.183

[17]

Paul H. Rabinowitz. On a class of reversible elliptic systems. Networks & Heterogeneous Media, 2012, 7 (4) : 927-939. doi: 10.3934/nhm.2012.7.927

[18]

David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117

[19]

Hildebrando M. Rodrigues, Tomás Caraballo, Marcio Gameiro. Dynamics of a Class of ODEs via Wavelets. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2337-2355. doi: 10.3934/cpaa.2017115

[20]

BronisŁaw Jakubczyk, Wojciech Kryński. Vector fields with distributions and invariants of ODEs. Journal of Geometric Mechanics, 2013, 5 (1) : 85-129. doi: 10.3934/jgm.2013.5.85

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]