June  2016, 9(3): 833-846. doi: 10.3934/dcdss.2016031

Strong solutions of quasilinear equations in Banach spaces not solvable with respect to the highest-order derivative

1. 

South Ural State University, 76 Lenina Av., Chelyabinsk, 454080, Russian Federation

Received  March 2015 Revised  June 2015 Published  April 2016

By means of the Mittag-Leffler function existence and uniqueness conditions are obtained for a strong solution of the Cauchy problem to quasilinear differential equation in a Banach space, solved with respect to the highest-order derivative. The results are used in the study of quasilinear equations with degenerate operator at the highest-order derivative. Some special restrictions for nonlinear operator in the equation are used here. Existence conditions of a unique strong solution for the Cauchy problem and generalized Showalter--Sidorov for degenerate quasilinear equations were found. The obtained results are illustrated by an example of initial-boundary value problem for a quasilinear system of equations not resolved with respect to the highest-order time derivative.
Citation: Marina V. Plekhanova. Strong solutions of quasilinear equations in Banach spaces not solvable with respect to the highest-order derivative. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 833-846. doi: 10.3934/dcdss.2016031
References:
[1]

P. N. Davydov and V. E. Fedorov, On Nonlocal Solutions of Semilinear Equations of the Sobolev Type,, Differ. Equ., 49 (2013), 326. doi: 10.1134/S0012266113030087. Google Scholar

[2]

G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative,, Marcel Dekker, (2003). doi: 10.1201/9780203911433. Google Scholar

[3]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces,, Marcel Dekker, (1999). Google Scholar

[4]

V. E. Fedorov and P. N. Davydov, Polulinejnye vyrozhdennye evolyucionnye uravneniya i nelinejnye sistemy gidrodinamicheskogo tipa,, (Russian) [Degenerate semilinear evolution equations and nonlinear systems of hydrodynamic type] Trudy instituta matematiki i mekhaniki UrO RAN, 19 (2013), 267. Google Scholar

[5]

V. E. Fedorov and M. V. Plekhanova, Optimal control of Sobolev type linear equations,, Differ. Equ., 40 (2004), 1627. doi: 10.1007/s10625-005-0082-9. Google Scholar

[6]

A. I. Kozhanov, Boundary value problems for some classes of higher-order equations that are unsolved with respect to the highest derivative,, Siberian Math. J., 35 (1994), 359. doi: 10.1007/BF02104779. Google Scholar

[7]

M. V. Plekhanova and V. E. Fedorov, On the existence and uniqueness of solutions of optimal control problems of linear distributed systems which are not solved with respect to the time derivative,, Izvestiya: Mathematics, 75 (2011), 395. doi: 10.1070/IM2011v075n02ABEH002538. Google Scholar

[8]

M. V. Plekhanova and V. E. Fedorov, Optimal'noe Upravlenie Vyrozddennymi Raspredelennymi Sistemami,, (Russian) [Optimal control of degenerate distributed systems], (2013). Google Scholar

[9]

R. E. Showalter, Nonlinear degenerate evolution equations and partial differential equations of mixed type,, SIAM J. Math. Anal., 6 (1975), 25. doi: 10.1137/0506004. Google Scholar

[10]

N. A. Sidorov, Ob odnom klasse vyrozhdennyx differencialnyx uravneniy s konvergentsiey,, (Russian) [On a class of degenerate differential equations with convergence] Mathematical Notes, 63 (1984), 569. Google Scholar

[11]

N. Sidorov, B. Loginov, A. Sinitsyn and M. Falaleev, Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications,, Dordrecht, (2002). doi: 10.1007/978-94-017-2122-6. Google Scholar

[12]

A. G. Sveshnikov, A. B. Al'shin, M. O. Korpusov and Yu. D. Pletner, Lineinye I Nelineinye Uravneniya Sobolevskogo Tipa,, (Russian) [Linear and Nonlinear Equations of the Sobolev Type], (2007). Google Scholar

[13]

G. A. Sviridyuk, Polulinejnye uravneniya tipa soboleva s otnositelno ogranichennym operatorom,, (Russian) [Semilinear equations of Sobolev type with relatively bounded operator] Doklady AN SSSR, 318 (1991), 828. Google Scholar

[14]

G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators,, Utrecht, (2003). doi: 10.1515/9783110915501. Google Scholar

[15]

G. A. Sviridyuk and T. G. Sukacheva, On the solvability of a nonstationary problem in the dynamics of an incompressible viscoelastic fluid,, Mathematical Notes, 63 (1998), 388. doi: 10.1007/BF02317787. Google Scholar

[16]

A. A. Zamyshlyaeva and E. V. Bychkov, Fazovoe prostranstvo modifitsirovannogo uravneniya Bussineska,, (Russian) [The phase space of the modified Boussinesq equation] Vestnik of South Ural State University. Ser. Matematicheskoe modelirovanie i programmirovanie, 19 (2012), 13. Google Scholar

show all references

References:
[1]

P. N. Davydov and V. E. Fedorov, On Nonlocal Solutions of Semilinear Equations of the Sobolev Type,, Differ. Equ., 49 (2013), 326. doi: 10.1134/S0012266113030087. Google Scholar

[2]

G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative,, Marcel Dekker, (2003). doi: 10.1201/9780203911433. Google Scholar

[3]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces,, Marcel Dekker, (1999). Google Scholar

[4]

V. E. Fedorov and P. N. Davydov, Polulinejnye vyrozhdennye evolyucionnye uravneniya i nelinejnye sistemy gidrodinamicheskogo tipa,, (Russian) [Degenerate semilinear evolution equations and nonlinear systems of hydrodynamic type] Trudy instituta matematiki i mekhaniki UrO RAN, 19 (2013), 267. Google Scholar

[5]

V. E. Fedorov and M. V. Plekhanova, Optimal control of Sobolev type linear equations,, Differ. Equ., 40 (2004), 1627. doi: 10.1007/s10625-005-0082-9. Google Scholar

[6]

A. I. Kozhanov, Boundary value problems for some classes of higher-order equations that are unsolved with respect to the highest derivative,, Siberian Math. J., 35 (1994), 359. doi: 10.1007/BF02104779. Google Scholar

[7]

M. V. Plekhanova and V. E. Fedorov, On the existence and uniqueness of solutions of optimal control problems of linear distributed systems which are not solved with respect to the time derivative,, Izvestiya: Mathematics, 75 (2011), 395. doi: 10.1070/IM2011v075n02ABEH002538. Google Scholar

[8]

M. V. Plekhanova and V. E. Fedorov, Optimal'noe Upravlenie Vyrozddennymi Raspredelennymi Sistemami,, (Russian) [Optimal control of degenerate distributed systems], (2013). Google Scholar

[9]

R. E. Showalter, Nonlinear degenerate evolution equations and partial differential equations of mixed type,, SIAM J. Math. Anal., 6 (1975), 25. doi: 10.1137/0506004. Google Scholar

[10]

N. A. Sidorov, Ob odnom klasse vyrozhdennyx differencialnyx uravneniy s konvergentsiey,, (Russian) [On a class of degenerate differential equations with convergence] Mathematical Notes, 63 (1984), 569. Google Scholar

[11]

N. Sidorov, B. Loginov, A. Sinitsyn and M. Falaleev, Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications,, Dordrecht, (2002). doi: 10.1007/978-94-017-2122-6. Google Scholar

[12]

A. G. Sveshnikov, A. B. Al'shin, M. O. Korpusov and Yu. D. Pletner, Lineinye I Nelineinye Uravneniya Sobolevskogo Tipa,, (Russian) [Linear and Nonlinear Equations of the Sobolev Type], (2007). Google Scholar

[13]

G. A. Sviridyuk, Polulinejnye uravneniya tipa soboleva s otnositelno ogranichennym operatorom,, (Russian) [Semilinear equations of Sobolev type with relatively bounded operator] Doklady AN SSSR, 318 (1991), 828. Google Scholar

[14]

G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators,, Utrecht, (2003). doi: 10.1515/9783110915501. Google Scholar

[15]

G. A. Sviridyuk and T. G. Sukacheva, On the solvability of a nonstationary problem in the dynamics of an incompressible viscoelastic fluid,, Mathematical Notes, 63 (1998), 388. doi: 10.1007/BF02317787. Google Scholar

[16]

A. A. Zamyshlyaeva and E. V. Bychkov, Fazovoe prostranstvo modifitsirovannogo uravneniya Bussineska,, (Russian) [The phase space of the modified Boussinesq equation] Vestnik of South Ural State University. Ser. Matematicheskoe modelirovanie i programmirovanie, 19 (2012), 13. Google Scholar

[1]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[2]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[3]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[4]

Rudong Zheng, Zhaoyang Yin. The Cauchy problem for a generalized Novikov equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3503-3519. doi: 10.3934/dcds.2017149

[5]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[6]

Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709

[7]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

[8]

V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731

[9]

Adrien Dekkers, Anna Rozanova-Pierrat. Cauchy problem for the Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 277-307. doi: 10.3934/dcds.2019012

[10]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[11]

Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917

[12]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[13]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

[14]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[15]

Martn P. Árciga Alejandre, Elena I. Kaikina. Mixed initial-boundary value problem for Ott-Sudan-Ostrovskiy equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 381-409. doi: 10.3934/dcds.2012.32.381

[16]

Ning-An Lai, Yi Zhou. Blow up for initial boundary value problem of critical semilinear wave equation in two space dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1499-1510. doi: 10.3934/cpaa.2018072

[17]

Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148

[18]

Fei Guo, Bao-Feng Feng, Hongjun Gao, Yue Liu. On the initial-value problem to the Degasperis-Procesi equation with linear dispersion. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1269-1290. doi: 10.3934/dcds.2010.26.1269

[19]

Roberto Camassa. Characteristics and the initial value problem of a completely integrable shallow water equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 115-139. doi: 10.3934/dcdsb.2003.3.115

[20]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]