# American Institute of Mathematical Sciences

April  2016, 9(2): 585-597. doi: 10.3934/dcdss.2016013

## Cellular instabilities analyzed by multi-scale Fourier series: A review

 1 LEM3, Laboratoire d'Etudes des Microstructures et de Mécanique des Matériaux, UMR CNRS 7239, Université de Lorraine, Ile du Saulcy, 57045 Metz Cedex 01, France, France 2 Department of Mechanics and Engineering Science, Fudan University, 220 Handan Road, 200433 Shanghai, China 3 Laboratoire d'Ingénierie et Matériaux LIMAT, Faculté des Sciences Ben M'Sik, Université Hassan II de Casablanca, Sidi Othman, Casablanca, Morocco, Morocco, Morocco 4 School of Civil Engineering, Wuhan University, 8 South Road of East Lake, 430072 Wuhan, China, China 5 Université de Montpellier, Laboratoire de Mécanique et Génie Civil, UMR CNRS 5508, CC048 Place Eugène Bataillon, 34095 Montpellier Cedex 05, France

Received  April 2015 Revised  October 2015 Published  March 2016

The paper is concerned by multi-scale methods to describe instability pattern formation, especially the method of Fourier series with variable coefficients. In this respect, various numerical tools are available. For instance in the case of membrane models, shell finite element codes can predict the details of the wrinkles, but with difficulties due to the large number of unknowns and the existence of many solutions. Macroscopic models are also available, but they account only for the effect of wrinkling on membrane behavior. A Fourier-related method has been introduced in order to modelize the main features of the wrinkles, but by using partial differential equations only at a macroscopic level. Within this method, the solution is sought in the form of few terms of Fourier series whose coefficients vary more slowly than the oscillations. The recent progresses about this Fourier-related method are reviewed and discussed.
Citation: Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013
##### References:

show all references

##### References:
 [1] Thomas Y. Hou, Pengfei Liu. Optimal local multi-scale basis functions for linear elliptic equations with rough coefficients. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4451-4476. doi: 10.3934/dcds.2016.36.4451 [2] Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky. Multi-scale model of bladder cancer development. Conference Publications, 2011, 2011 (Special) : 803-812. doi: 10.3934/proc.2011.2011.803 [3] Thomas Blanc, Mihaï Bostan. Multi-scale analysis for highly anisotropic parabolic problems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 335-399. doi: 10.3934/dcdsb.2019186 [4] Thierry Cazenave, Flávio Dickstein, Fred B. Weissler. Multi-scale multi-profile global solutions of parabolic equations in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 449-472. doi: 10.3934/dcdss.2012.5.449 [5] Emiliano Cristiani, Elisa Iacomini. An interface-free multi-scale multi-order model for traffic flow. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6189-6207. doi: 10.3934/dcdsb.2019135 [6] Jean-Philippe Bernard, Emmanuel Frénod, Antoine Rousseau. Modeling confinement in Étang de Thau: Numerical simulations and multi-scale aspects. Conference Publications, 2013, 2013 (special) : 69-76. doi: 10.3934/proc.2013.2013.69 [7] Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501 [8] Grigor Nika, Bogdan Vernescu. Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1553-1564. doi: 10.3934/dcdss.2016062 [9] Thomas Blanc, Mihai Bostan, Franck Boyer. Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4637-4676. doi: 10.3934/dcds.2017200 [10] Markus Gahn. Multi-scale modeling of processes in porous media - coupling reaction-diffusion processes in the solid and the fluid phase and on the separating interfaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6511-6531. doi: 10.3934/dcdsb.2019151 [11] Huichi Huang. Fourier coefficients of $\times p$-invariant measures. Journal of Modern Dynamics, 2017, 11: 551-562. doi: 10.3934/jmd.2017021 [12] Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020 [13] Hai Huyen Dam, Kok Lay Teo. Variable fractional delay filter design with discrete coefficients. Journal of Industrial & Management Optimization, 2016, 12 (3) : 819-831. doi: 10.3934/jimo.2016.12.819 [14] Fágner D. Araruna, Flank D. M. Bezerra, Milton L. Oliveira. Rate of attraction for a semilinear thermoelastic system with variable coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3211-3226. doi: 10.3934/dcdsb.2018316 [15] Jamel Ben Amara, Emna Beldi. Simultaneous controllability of two vibrating strings with variable coefficients. Evolution Equations & Control Theory, 2019, 8 (4) : 687-694. doi: 10.3934/eect.2019032 [16] Abderrahman Iggidr, Josepha Mbang, Gauthier Sallet, Jean-Jules Tewa. Multi-compartment models. Conference Publications, 2007, 2007 (Special) : 506-519. doi: 10.3934/proc.2007.2007.506 [17] Linda J. S. Allen, P. van den Driessche. Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences & Engineering, 2006, 3 (3) : 445-458. doi: 10.3934/mbe.2006.3.445 [18] Shikuan Mao, Yongqin Liu. Decay property for solutions to plate type equations with variable coefficients. Kinetic & Related Models, 2017, 10 (3) : 785-797. doi: 10.3934/krm.2017031 [19] Takahiro Hashimoto. Nonexistence of weak solutions of quasilinear elliptic equations with variable coefficients. Conference Publications, 2009, 2009 (Special) : 349-358. doi: 10.3934/proc.2009.2009.349 [20] M. Eller, Roberto Triggiani. Exact/approximate controllability of thermoelastic plates with variable thermal coefficients. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 283-302. doi: 10.3934/dcds.2001.7.283

2018 Impact Factor: 0.545