October  2015, 8(5): 901-911. doi: 10.3934/dcdss.2015.8.901

Error estimates for a nonlinear local projection stabilization of transient convection--diffusion--reaction equations

1. 

Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18675 Praha 8, Czech Republic

Received  February 2014 Revised  August 2014 Published  July 2015

A recently proposed local projection stabilization (LPS) finite element method containing a nonlinear crosswind diffusion term is analyzed for a transient convection-diffusion-reaction equation using a one-step $\theta$-scheme as temporal discretization. Both the fully nonlinear method and its semi-implicit variant are considered. Solvability of the discrete problem is established and a priori error estimates in the LPS norm are proved. Uniqueness of the discrete solution is proved for the semi-implicit approach or for sufficiently small time steps.
Citation: Petr Knobloch. Error estimates for a nonlinear local projection stabilization of transient convection--diffusion--reaction equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 901-911. doi: 10.3934/dcdss.2015.8.901
References:
[1]

G. Barrenechea, V. John and P. Knobloch, A nonlinear local projection stabilization for convection-diffusion-reaction equations,, in Numerical Mathematics and Advanced Applications 2011, (2011), 237. doi: 10.1007/978-3-642-33134-3_26.

[2]

S. Ganesan and L. Tobiska, Stabilization by local projection for convection-diffusion and incompressible flow problems,, J. Sci. Comput., 43 (2010), 326. doi: 10.1007/s10915-008-9259-8.

[3]

V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: Part I - A review,, Comput. Methods Appl. Mech. Engrg., 196 (2007), 2197. doi: 10.1016/j.cma.2006.11.013.

[4]

P. Knobloch, A generalization of the local projection stabilization for convection-diffusion-reaction equations,, SIAM J. Numer. Anal., 48 (2010), 659. doi: 10.1137/090767807.

[5]

P. Knobloch, Local projection method for convection-diffusion-reaction problems with projection spaces defined on overlapping sets,, in Numerical Mathematics and Advanced Applications 2009, (2009), 497. doi: 10.1007/978-3-642-11795-4_53.

[6]

G. Matthies, P. Skrzypacz and L. Tobiska, A unified convergence analysis for local projection stabilizations applied to the Oseen problem,, M2AN Math. Model. Numer. Anal., 41 (2007), 713. doi: 10.1051/m2an:2007038.

[7]

H.-G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems. 2nd ed.,, Springer-Verlag, (2008).

show all references

References:
[1]

G. Barrenechea, V. John and P. Knobloch, A nonlinear local projection stabilization for convection-diffusion-reaction equations,, in Numerical Mathematics and Advanced Applications 2011, (2011), 237. doi: 10.1007/978-3-642-33134-3_26.

[2]

S. Ganesan and L. Tobiska, Stabilization by local projection for convection-diffusion and incompressible flow problems,, J. Sci. Comput., 43 (2010), 326. doi: 10.1007/s10915-008-9259-8.

[3]

V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: Part I - A review,, Comput. Methods Appl. Mech. Engrg., 196 (2007), 2197. doi: 10.1016/j.cma.2006.11.013.

[4]

P. Knobloch, A generalization of the local projection stabilization for convection-diffusion-reaction equations,, SIAM J. Numer. Anal., 48 (2010), 659. doi: 10.1137/090767807.

[5]

P. Knobloch, Local projection method for convection-diffusion-reaction problems with projection spaces defined on overlapping sets,, in Numerical Mathematics and Advanced Applications 2009, (2009), 497. doi: 10.1007/978-3-642-11795-4_53.

[6]

G. Matthies, P. Skrzypacz and L. Tobiska, A unified convergence analysis for local projection stabilizations applied to the Oseen problem,, M2AN Math. Model. Numer. Anal., 41 (2007), 713. doi: 10.1051/m2an:2007038.

[7]

H.-G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems. 2nd ed.,, Springer-Verlag, (2008).

[1]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

[2]

Igor Pažanin, Marcone C. Pereira. On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption. Communications on Pure & Applied Analysis, 2018, 17 (2) : 579-592. doi: 10.3934/cpaa.2018031

[3]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[4]

Huan-Zhen Chen, Zhao-Jie Zhou, Hong Wang, Hong-Ying Man. An optimal-order error estimate for a family of characteristic-mixed methods to transient convection-diffusion problems. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 325-341. doi: 10.3934/dcdsb.2011.15.325

[5]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[6]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[7]

Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203

[8]

Alessio Fiscella, Enzo Vitillaro. Local Hadamard well--posedness and blow--up for reaction--diffusion equations with non--linear dynamical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5015-5047. doi: 10.3934/dcds.2013.33.5015

[9]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[10]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[11]

Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663

[12]

Svetlana Matculevich, Pekka Neittaanmäki, Sergey Repin. A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne--Weinberger inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2659-2677. doi: 10.3934/dcds.2015.35.2659

[13]

Youngmok Jeon, Eun-Jae Park. Cell boundary element methods for convection-diffusion equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 309-319. doi: 10.3934/cpaa.2006.5.309

[14]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[15]

Patrick Henning, Mario Ohlberger. The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks & Heterogeneous Media, 2010, 5 (4) : 711-744. doi: 10.3934/nhm.2010.5.711

[16]

Meng Zhao, Aijie Cheng, Hong Wang. A preconditioned fast Hermite finite element method for space-fractional diffusion equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3529-3545. doi: 10.3934/dcdsb.2017178

[17]

M. González, J. Jansson, S. Korotov. A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems. Conference Publications, 2015, 2015 (special) : 525-532. doi: 10.3934/proc.2015.0525

[18]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[19]

Iryna Pankratova, Andrey Piatnitski. Homogenization of convection-diffusion equation in infinite cylinder. Networks & Heterogeneous Media, 2011, 6 (1) : 111-126. doi: 10.3934/nhm.2011.6.111

[20]

Vitali Vougalter, Vitaly Volpert. On the solvability conditions for the diffusion equation with convection terms. Communications on Pure & Applied Analysis, 2012, 11 (1) : 365-373. doi: 10.3934/cpaa.2012.11.365

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]