August  2015, 8(4): 723-747. doi: 10.3934/dcdss.2015.8.723

The Souza-Auricchio model for shape-memory alloys

1. 

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria

Received  November 2013 Revised  March 2014 Published  October 2014

Shape-memory alloys are active materials, their amazing thermo-electromechanical behavior is at the basis of a variety of innovative applications. Many models have been set forth in order to describe this complex behavior. Among these the so-called Souza-Auricchio model appears as remarkably simple in terms of mechanical assumptions yet accurate in the description of three-dimensional experiments and robust with respect to approximations. Our aim is to survey here the current literature on the Souza-Auricchio model, with a specific focus on modeling.
Citation: Diego Grandi, Ulisse Stefanelli. The Souza-Auricchio model for shape-memory alloys. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 723-747. doi: 10.3934/dcdss.2015.8.723
References:
[1]

T. Aiki, A model of 3D shape memory alloy materials,, J. Math. Soc. Japan, 57 (2005), 903. doi: 10.2969/jmsj/1158241940. Google Scholar

[2]

M. Arndt, M. Griebel and T. Roubíček, Modelling and numerical simulation of martensitic transformation in shape memory alloys,, Contin. Mech. Thermodyn., 15 (2003), 463. doi: 10.1007/s00161-003-0127-3. Google Scholar

[3]

M. Arrigoni, F. Auricchio, V. Cacciafesta, L. Petrini and R. Pietrabissa, Cyclic effects in shape-memory alloys: A one-dimensional continuum model,, J. Phys. IV France, 11 (2001), 577. Google Scholar

[4]

E. Artioli, F. Auricchio and R. L. Taylor, A beam finite element for nonlinear analysis of shape memory alloy devices,, in New Trends in Thin Structures: Formulation, (2010), 59. doi: 10.1007/978-3-7091-0231-2_3. Google Scholar

[5]

E. Artioli, S. Marfia, E. Sacco and R. L. Taylor, A nonlinear plate finite element formulation for shape memory alloy applications,, Internat. J. Numer. Meth. Engrg., 89 (2012), 1249. doi: 10.1002/nme.3285. Google Scholar

[6]

F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, Macroscopic modeling of magnetic shape memory alloys,, Oberwolfach Reports, 14 (2010), 771. Google Scholar

[7]

F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, A three-dimensional phenomenological models for magnetic shape memory alloys,, GAMM-Mitt., 34 (2011), 90. doi: 10.1002/gamm.201110014. Google Scholar

[8]

F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, A phenomenological model for the magneto-mechanical response of single-crystal magnetic shape memory alloys,, preprint IMATI-CNR, (2013). Google Scholar

[9]

F. Auricchio, E. Boatti, A. Reali and U. Stefanelli, The GENERIC formulation of coupled thermomechanical response in shape-memory alloys,, in preparation, (2013). Google Scholar

[10]

F. Auricchio and E. Bonetti, A new "flexible'' 3D macroscopic model for shape memory alloys,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 277. Google Scholar

[11]

F. Auricchio and J. Lubliner, A uniaxial model for shape-memory alloys,, Internat. J. Solids Structures, 34 (1997), 3601. doi: 10.1016/S0020-7683(96)00232-6. Google Scholar

[12]

F. Auricchio, A. Mielke and U. Stefanelli, A rate-independent model for the isothermal quasi-static evolution of shape-memory materials,, Math. Models Meth. Appl. Sci., 18 (2008), 125. doi: 10.1142/S0218202508002632. Google Scholar

[13]

F. Auricchio, L. Petrini, Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations,, Internat. J. Numer. Methods Engrg., 55 (2002), 1255. doi: 10.1002/nme.619. Google Scholar

[14]

F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations. Part I: Solution algorithm and boundary value problems,, Internat. J. Numer. Meth. Engrg., 61 (2004), 807. doi: 10.1002/nme.1086. Google Scholar

[15]

F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations. Part II: Thermomechanical coupling and hybrid composite applications,, Internat. J. Numer. Meth. Engrg., 61 (2004), 716. doi: 10.1002/nme.1087. Google Scholar

[16]

F. Auricchio, A. Reali and U. Stefanelli, A three-dimensional model describing stress-induces solid phase transformation with residual plasticity,, Int. J. Plasticity, 23 (2007), 207. Google Scholar

[17]

F. Auricchio, A. Reali and U. Stefanelli, A phenomenological 3D model describing stress-induced solid phase transformations with permanent inelasticity,, in Topics on Mathematics for Smart Systems (eds. B. Miara, (2007), 1. doi: 10.1142/9789812706874_0001. Google Scholar

[18]

F. Auricchio, A. Reali and U. Stefanelli, A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties,, Comput. Methods Appl. Mech. Engrg., 198 (2009), 1631. doi: 10.1016/j.cma.2009.01.019. Google Scholar

[19]

F. Auricchio and U. Stefanelli, Well-posedness and approximation for a one-dimensional model for shape memory alloys,, Math. Models Meth. Appl. Sci., 15 (2005), 1301. doi: 10.1142/S0218202505000753. Google Scholar

[20]

K. Bhattacharya, Microstructures of Martensites,, Oxford Series on Materials Modeling, (2003). Google Scholar

[21]

V. Berti, M. Fabrizio and D. Grandi, Phase transitions in shape memory alloys: A non-isothermal Ginzburg-Landau model,, Phys. D, 239 (2010), 95. doi: 10.1016/j.physd.2009.10.005. Google Scholar

[22]

V. Berti, M. Fabrizio and D. Grandi, Hysteresis and phase transitions for one-dimensional and three-dimensional models in shape memory alloys,, J. Math. Phys., 51 (2010). doi: 10.1063/1.3430573. Google Scholar

[23]

A.-L. Bessoud and U. Stefanelli, Magnetic shape memory alloys: Three-dimensional modeling and analysis,, Math. Models Meth. Appl. Sci., 21 (2011), 1043. doi: 10.1142/S0218202511005246. Google Scholar

[24]

A.-L. Bessoud, M. Kružík and U. Stefanelli, A macroscopic model for magnetic shape memory alloys,, Z. Angew. Math. Phys., 64 (2013), 343. doi: 10.1007/s00033-012-0223-y. Google Scholar

[25]

H. Brézis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, Math. Studies, (1973). Google Scholar

[26]

Z. Bo and D. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading. Part III: Evolution of plastic strains and two- way shape memory effect,, Int. J. Engrg. Sci., 37 (1999), 1175. doi: 10.1016/S0020-7225(98)00115-3. Google Scholar

[27]

E. Bonetti, Global solvability of a dissipative Frémond model for shape memory alloys. I. Mathematical formulation and uniqueness,, Quart. Appl. Math., 61 (2003), 759. Google Scholar

[28]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Applied Mathematical Sciences, (1996). doi: 10.1007/978-1-4612-4048-8. Google Scholar

[29]

W. F. Brown, Jr., Magnetoelastic Interactions,, Springer, (1966). doi: 10.1007/978-3-642-87396-6. Google Scholar

[30]

N. Bubner, J. Sokołowski and J. Sprekels, Optimal boundary control problems for shape memory alloys under state constraints for stress and temperature,, Numer. Funct. Anal. Optim., 19 (1998), 489. doi: 10.1080/01630569808816840. Google Scholar

[31]

P. Colli, Global existence for the three-dimensional Frémond model of shape memory alloys,, Nonlinear Anal., 24 (1995), 1565. doi: 10.1016/0362-546X(94)00097-2. Google Scholar

[32]

P. Colli, M. Frémond and A. Visintin, Thermo-mechanical evolution of shape memory alloys,, Quart. Appl. Math., 48 (1990), 31. Google Scholar

[33]

S. Conti, M. Lenz and M. Rumpf, Macroscopic behaviour of magnetic shape-memory polycrystals and polymer composites,, Mater. Sci. Engrg. A, 481-482 (2008), 481. doi: 10.1016/j.msea.2007.04.126. Google Scholar

[34]

B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials,, Second ed., (2008). doi: 10.1002/9780470386323. Google Scholar

[35]

F. Daghia, M. Fabrizio and D. Grandi, A non isothermal Ginzburg-Landau model for phase transitions in shape memory alloys,, Meccanica, 45 (2010), 797. doi: 10.1007/s11012-010-9286-z. Google Scholar

[36]

R. Delville, B. Malard, J. Pilch, P. Šittner and D. Schryvers, Microstructure changes during non-conventional heat treatment of thin Ni-Ti wires by pulsed electric current studied by transmission electron microscopy,, Acta Mater., 58 (2010), 4503. doi: 10.1016/j.actamat.2010.04.046. Google Scholar

[37]

R. Delville, B. Malard, J. Pilch, P. Šittner and D. Schryvers, Transmission electron microscopy study of microstructural evolution in nanograined Ni-Ti microwires heat treated by electric pulse,, Solid State Phenom., 172-174 (2011), 172. doi: 10.4028/www.scientific.net/SSP.172-174.682. Google Scholar

[38]

A. DeSimone and R. D. James, A constrained theory of magnetoelasticity,, J. Mech. Phys. Solids, 50 (2002), 283. doi: 10.1016/S0022-5096(01)00050-3. Google Scholar

[39]

T. W. Duerig and A. R. Pelton, eds., SMST-2003 Proceedings of the International Conference on Shape Memory and Superelastic Technology Conference,, ASM International, (2003). Google Scholar

[40]

J. Dutkiewicz, Plastic deformation of CuAlMn shape-memory alloys,, J. Mat. Sci., 29 (1994), 6249. doi: 10.1007/BF00354567. Google Scholar

[41]

M. Eleuteri, L. Lussardi and U. Stefanelli, A rate-independent model for permanent inelastic effects in shape memory materials,, Netw. Heterog. Media, 6 (2011), 145. doi: 10.3934/nhm.2011.6.145. Google Scholar

[42]

M. Eleuteri and L. Lussardi, Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials,, Evol. Equ. Control Theory, 3 (2014), 411. doi: 10.3934/eect.2014.3.411. Google Scholar

[43]

M. Eleuteri, L. Lussardi and U. Stefanelli, Thermal control of the Souza-Auricchio model for shape memory alloys,, Discrete Cont. Dyn. Syst.-S, 6 (2013), 369. Google Scholar

[44]

V. Evangelista, S. Marfia and E. Sacco, Phenomenological 3D and 1D consistent models for shape-memory alloy materials,, Comput. Mech., 44 (2009), 405. doi: 10.1007/s00466-009-0381-8. Google Scholar

[45]

V. Evangelista, S. Marfia and E. Sacco, A 3D SMA constitutive model in the framework of finite strain,, Internat. J. Numer. Methods Engrg., 81 (2010), 761. doi: 10.1002/nme.2717. Google Scholar

[46]

F. Falk, Model free energy, mechanics and thermodynamics of shape memory alloys,, Acta Metal., 28 (1980), 1773. doi: 10.1016/0001-6160(80)90030-9. Google Scholar

[47]

F. Falk and P. Konopka, Three-dimensional Landau theory describing the martensitic phase transformation of shape-memory alloys,, Continuum Models of Discrete Systems, 123-125 (1990), 123. doi: 10.4028/www.scientific.net/MSF.123-125.113. Google Scholar

[48]

G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies,, J. Reine Angew. Math., 595 (2006), 55. doi: 10.1515/CRELLE.2006.044. Google Scholar

[49]

M. Frémond, Matériaux à mémoire de forme,, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, 304 (1987), 239. Google Scholar

[50]

M. Frémond, Non-Smooth Thermomechanics,, Springer-Verlag, (2002). doi: 10.1007/978-3-662-04800-9. Google Scholar

[51]

M. Frémond and S. Miyazaki, Shape Memory Alloys,, CISM Courses and Lectures, (1996). Google Scholar

[52]

M. Frémond and E. Rocca, A model for shape memory alloys with the possibility of voids,, Discrete Contin. Dyn. Syst., 27 (2010), 1633. doi: 10.3934/dcds.2010.27.1633. Google Scholar

[53]

S. Frigeri, P. Krejčí and U. Stefanelli, Quasistatic isothermal evolution of shape memory alloys,, Math. Models Meth. Appl. Sci., 21 (2011), 2409. doi: 10.1142/S0218202511005787. Google Scholar

[54]

S. Frigeri and U. Stefanelli, Existence and time-discretization for the finite-strain Souza-Auricchio constitutive model for shape-memory alloys,, Contin. Mech. Thermodyn., 24 (2012), 63. doi: 10.1007/s00161-011-0221-x. Google Scholar

[55]

J.-Y. Gauthier, C. Lexcellent, A. Hubert, J. Abadie and N. Chaillet, Magneto-thermo-mechanical modeling of a magnetic shape memory alloy Ni-Mn-Ga single crystal,, Ann. Solid Struct. Mech., 2 (2001), 19. doi: 10.1007/s12356-011-0014-8. Google Scholar

[56]

S. Govindjee and C. Miehe, A multi-variant martensitic phase transformation model: Formulation and numerical implementation,, Comput. Methods Appl. Mech. Engrg., 191 (2001), 215. doi: 10.1016/S0045-7825(01)00271-7. Google Scholar

[57]

S. Govindjee and E. P. Kasper, A shape memory alloy model for uranium- niobium accounting for plasticity,, J. Intelligent Mat. Syst. Struct., 8 (1997), 815. doi: 10.1177/1045389X9700801001. Google Scholar

[58]

D. Grandi and U. Stefanelli, Modeling microstructure-dependent inelasticity in shape-memory alloys,, preprint, (2013). Google Scholar

[59]

D. Helm and P. Haupt, Shape memory behaviour: Modelling within continuum thermomechanics,, Intern. J. Solids Struct., 40 (2003), 827. doi: 10.1016/S0020-7683(02)00621-2. Google Scholar

[60]

L. Hirsinger and C. Lexcellent, Internal variable model for magneto-mechanical behaviour of ferromagnetic shape memory alloys Ni-Mn-Ga,, J. Phys. IV, 112 (2003), 977. doi: 10.1051/jp4:20031044. Google Scholar

[61]

K.-H. Hoffmann, M. Niezgódka and Z. Songmu, Existence and uniqueness of global solutions to an extended model of the dynamical developments in shape memory alloys,, Nonlinear Anal., 15 (1990), 977. doi: 10.1016/0362-546X(90)90079-V. Google Scholar

[62]

K.-H. Hoffmann and D. Tiba, Control of a plate with nonlinear shape memory alloy reinforcements,, Adv. Math. Sci. Appl., 7 (1997), 427. Google Scholar

[63]

K.-H. Hoffmann and A. Żochowski, Control of the thermoelastic model of a plate activated by shape memory alloy reinforcements,, Math. Methods Appl. Sci., 21 (1998), 589. Google Scholar

[64]

R. D. James and M. Wuttig, Magnetostriction of martensite,, Phil. Mag. A, 77 (1998), 1273. doi: 10.1080/01418619808214252. Google Scholar

[65]

H. E. Karaca, I. Karaman, B. Basaran, Y. I. Chumlyakov and H. J. Maier, Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals,, Acta Mat., 54 (2006), 233. doi: 10.1016/j.actamat.2005.09.004. Google Scholar

[66]

J. Kiang and L. Tong, Modelling of magneto-mechanical behaviour of Ni-Mn-Ga single crystals,, J. Magn. Magn. Mater., 292 (2005), 394. doi: 10.1016/j.jmmm.2004.11.481. Google Scholar

[67]

B. Kiefer, A Phenomelogical Model for Magnetic Shape Memory Alloys,, Ph.D Thesis, (2006). Google Scholar

[68]

B. Kiefer and D. C. Lagoudas, Modeling the coupled strain and magnetization response of magnetic shape memory alloys under magnetomechanical loading,, J. Intell. Mater. Syst. Struct., 20 (2009), 143. doi: 10.1177/1045389X07086688. Google Scholar

[69]

B. Kiefer, H. Karaca, D. C. Lagoudas and I. Karaman, Characterization and modeling of the magnetic field-induced strain and work output in Ni$_2$MnGa magnetic shape memory alloys,, J. Magn. Magn. Mater., 312 (2007), 164. Google Scholar

[70]

P. Krejčí and U. Stefanelli, Existence and nonexistence for the full thermomechanical Souza-Auricchio model of shape memory wires,, Math. Mech. Solids, 16 (2011), 349. doi: 10.1177/1081286510386935. Google Scholar

[71]

P. Krejčí and U. Stefanelli, Well-posedness of a thermo-mechanical model for shape memory alloys under tension,, M2AN Math. Model. Numer. Anal., 44 (2010), 1239. doi: 10.1051/m2an/2010024. Google Scholar

[72]

M. Kružík and J. Zimmer, A model of shape memory alloys taking into account plasticity,, IMA J. Appl. Math., 76 (2011), 193. doi: 10.1093/imamat/hxq058. Google Scholar

[73]

D. C. Lagoudas and P. Entchev, Modeling of transformation-induced plas- ticity and its effect on the behavior of porous shape memory alloys. Part I: Constitutive model for fully dense SMAs,, Mech. Mat., 36 (2004), 865. Google Scholar

[74]

D. C. Lagoudas, P. B. Entchev, P. Popov, E. Patoor, L. C. Brinson and X. Gao, Shape memory alloys, Part II: Modeling of polycrystals,, Mech. Materials, 38 (2006), 430. doi: 10.1016/j.mechmat.2005.08.003. Google Scholar

[75]

E. Lee, Elastic-plastic deformation at finite strains,, J. Appl. Mech, 36 (1969), 1. doi: 10.1115/1.3564580. Google Scholar

[76]

V. I. Levitas, Thermomechanical theory of martensitic phase transformations in inelastic materials,, Intern. J. Solids Struct., 35 (1998), 889. doi: 10.1016/S0020-7683(97)00089-9. Google Scholar

[77]

Ch. Lexcellent, Shape-Memory Alloys Handbook,, Wiley, (2013). doi: 10.1002/9781118577776. Google Scholar

[78]

A. A. Likhachev and K. Ullakko, Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni-Mn-Ga shape memory alloy,, Phys. Lett. A, 275 (2000), 142. doi: 10.1016/S0375-9601(00)00561-2. Google Scholar

[79]

B. Malard, J. Pilch, P. Šittner, R. Delville and C. Curfs, In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires,, Acta Mater., 59 (2011), 1542. doi: 10.1016/j.actamat.2010.11.018. Google Scholar

[80]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems,, Calc. Var. Partial Differential Equations, 22 (2005), 73. doi: 10.1007/s00526-004-0267-8. Google Scholar

[81]

M. Maraldi, L. Molari and D. Grandi, A non-isothermal phase-field model for shape memory alloys: Numerical simulations of superelasticity and shape memory effect under stress- controlled conditions,, J. Intelligent Mat. Syst. Struct., 23 (2012), 1083. doi: 10.1177/1045389X12442012. Google Scholar

[82]

M. Maraldi, L. Molari and D. Grandi, A macroscale, phase-field model for shape memory alloys with non-isothermal effects: Influence of strain-rate and environmental conditions on the mechanical response,, Acta Mat., 60 (2012), 179. Google Scholar

[83]

C. Miehe, B. Kiefer and D. Rosato, An incremental variational formulation of dissipative magnetostriction at the macroscopic continuum level,, Internat. J. Solids Struct., 48 (2011), 1846. doi: 10.1016/j.ijsolstr.2011.02.011. Google Scholar

[84]

A. Mielke, Evolution of rate-independent systems,, in Handbook of Differential Equations, (2005), 461. Google Scholar

[85]

A. Mielke, Formulation of thermoelastic dissipative material behavior using GENERIC,, Contin. Mech. Thermodyn., 23 (2011), 233. doi: 10.1007/s00161-010-0179-0. Google Scholar

[86]

A. Mielke, On thermodynamically consistent models and gradient structures for thermoplasticity,, GAMM Mitt., 34 (2011), 51. doi: 10.1002/gamm.201110008. Google Scholar

[87]

A. Mielke, L. Paoli and A. Petrov, On existence and approximation for a 3D model of thermally induced phase transformations in shape-memory alloys,, SIAM J. Math. Anal., 41 (2009), 1388. doi: 10.1137/080726215. Google Scholar

[88]

A. Mielke, L. Paoli, A. Petrov, U. Stefanelli, Error estimates for space-time discretizations of a rate-independent variational inequality,, SIAM J. Numer. Anal., 48 (2010), 1625. doi: 10.1137/090750238. Google Scholar

[89]

A. Mielke, L. Paoli, A. Petrov and U. Stefanelli, Error bounds for space-time discretizations of a 3d model for shape-memory materials,, in IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials (ed. K. Hackl), (2010), 185. doi: 10.1007/978-90-481-9195-6_14. Google Scholar

[90]

A. Mielke and A. Petrov, Thermally driven phase transformation in shape-memory alloys,, Adv. Math. Sci. Appl., 17 (2007), 667. Google Scholar

[91]

A. Mielke and F. Rindler, Reverse approximation of energetic solutions to rate-independent processes,, NoDEA Nonlinear Differential Equations Appl., 16 (2009), 17. doi: 10.1007/s00030-008-7065-5. Google Scholar

[92]

A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems,, Calc. Var. Partial Differential Equations, 31 (2008), 387. doi: 10.1007/s00526-007-0119-4. Google Scholar

[93]

A. Mielke and U. Stefanelli, Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity,, J. Eur. Math. Soc. (JEMS), 15 (2013), 923. doi: 10.4171/JEMS/381. Google Scholar

[94]

A. Mielke and F. Theil, On rate-independent hysteresis models,, NoDEA Nonlinear Diff. Equations Applications, 11 (2004), 151. doi: 10.1007/s00030-003-1052-7. Google Scholar

[95]

S. J. Murray, M. Marioni, P. G. Tello, S. M. Allen and R. C. O'Handley, Giant magnetic-field-induced strain in Ni-Mn-Ga crystals: Experimental results and modeling,, J. Magn. Magn. Mater., 226-230 (2001), 226. doi: 10.1016/S0304-8853(00)00611-9. Google Scholar

[96]

S. J. Murray, S. M. Allen, R. C. O'Handley and T. A. Lograsso, Magnetomechanical performance and mechanical properties of Ni-Mn-Ga ferromagnetic shape memory alloys,, in SPIE Proceedings 3992, (3992). doi: 10.1117/12.388253. Google Scholar

[97]

S. J. Murray, R. C. O'Handley and S. M. Allen, Model for discontinuous actuation of ferromagnetic shape memory alloy under stress,, J. Appl. Phys., 89 (2000), 1295. doi: 10.1063/1.1285867. Google Scholar

[98]

R. C. O'Handley, Model for strain and magnetization in magnetic shape-memory alloys,, J. Appl. Phys., 83 (1998), 3263. Google Scholar

[99]

R. C. O'Handley, S. J. Murray, M. Marioni, H. Nembach and S. M. Allen, Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials,, J. Appl. Phys., 87 (): 4712. Google Scholar

[100]

A. Paiva, M. A. Savi, A. M. B. Braga and P. M. C. L. Pacheco, A constitutive model for shape memory alloys considering tensile-compressive asymmetry and plasticity,, Int. J. Solids Struct., 42 (2005), 3439. doi: 10.1016/j.ijsolstr.2004.11.006. Google Scholar

[101]

I. Pawłow and W. M. Zajaczkowski, Global existence to a three-dimensional non-linear thermoelasticity system arising in shape memory materials,, Math. Methods Appl. Sci., 28 (2005), 407. doi: 10.1002/mma.574. Google Scholar

[102]

L. Paoli and A. Petrov, Global existence result for phase transformations with heat transfer in shape memory alloys,, preprint, (2011). Google Scholar

[103]

L. Paoli and A. Petrov, Existence result for a class of generalized standard materials with thermomechanical coupling,, preprint, (2011). Google Scholar

[104]

L. Paoli and A. Petrov, Thermodynamics of multiphase problems in viscoelasticity,, GAMM-Mitt., 35 (2012), 75. doi: 10.1002/gamm.201210006. Google Scholar

[105]

L. Paoli and A. Petrov, Global existence result for thermoviscoelastic problems with hysteresis,, Nonlinear Anal. Real World Appl., 13 (2012), 524. doi: 10.1016/j.nonrwa.2011.07.018. Google Scholar

[106]

L. Paoli and A. Petrov, Solvability for a class of generalized standard materials with thermomechanical coupling,, Nonlinear Anal. Real World Appl., 14 (2013), 111. doi: 10.1016/j.nonrwa.2012.05.006. Google Scholar

[107]

I. Pawłow and A. Żochowski, A Control Problem for a Thermoelastic System in Shape Memory Materials. Free Boundary Problems,, (Japanese), (2001), 8. Google Scholar

[108]

B. Peultier, T. Ben Zineb and E. Patoor, Macroscopic constitutive law for SMA: Application to structure analysis by FEM,, Materials Sci. Engrg. A, 438-440 (2006), 438. doi: 10.1016/j.msea.2006.01.104. Google Scholar

[109]

P. Popov and D. C. Lagoudas, A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite,, Int. J. Plasticity, 23 (2007), 1679. doi: 10.1016/j.ijplas.2007.03.011. Google Scholar

[110]

B. Raniecki and Ch. Lexcellent, $R_L$ models of pseudoelasticity and their specification for some shape-memory solids,, Eur. J. Mech. A Solids, 13 (1994), 21. Google Scholar

[111]

S. Reese and D. Christ, Finite deformation pseudo-elasticity of shape memory alloys - Constitutive modelling and finite element implementation,, Int. J. Plasticity, 24 (2008), 455. doi: 10.1016/j.ijplas.2007.05.005. Google Scholar

[112]

F. Rindler, Optimal control for nonconvex rate-independent evolution processes,, SIAM J. Control Optim., 47 (2008), 2773. doi: 10.1137/080718711. Google Scholar

[113]

F. Rindler, Approximation of rate-independent optimal control problems,, SIAM J. Numer. Anal., 47 (2009), 3884. doi: 10.1137/080744050. Google Scholar

[114]

T.Roubíček, Models of microstructure evolution in shape memory alloys,, in Nonlinear Homogenization and its Appl.to Composites, (2004), 269. doi: 10.1007/1-4020-2623-4_12. Google Scholar

[115]

T. Roubíček, Rate-independent processes in viscous solids at small strains,, Math. Methods Appl. Sci., 32 (2009), 825. doi: 10.1002/mma.1069. Google Scholar

[116]

T. Roubíček, Thermodynamics of rate-independent processes in viscous solids at small strains,, SIAM J. Math. Anal., 42 (2010), 256. doi: 10.1137/080729992. Google Scholar

[117]

T. Roubíček, Approximation in multiscale modelling of microstructure evolution in shape-memory alloys,, Cont. Mech. Thermodynam., 23 (2011), 491. doi: 10.1007/s00161-011-0190-0. Google Scholar

[118]

T. Roubíček, Nonlinearly coupled thermo-visco-elasticity,, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1243. doi: 10.1007/s00030-012-0207-9. Google Scholar

[119]

T. Roubíček and U. Stefanelli, Magnetic shape-memory alloys: Thermomechanical modeling and analysis,, preprint, (2013). Google Scholar

[120]

T. Roubíček and G. Tomassetti, Thermodynamics of shape-memory alloys under electric current,, Z. Angew. Math. Phys., 61 (2010), 1. doi: 10.1007/s00033-009-0007-1. Google Scholar

[121]

T. Roubíček and G. Tomassetti, Phase transformations in electrically conductive ferromagnetic shape-memory alloys, their thermodynamics and analysis,, Arch. Ration. Mech. Anal., 210 (2013), 1. doi: 10.1007/s00205-013-0648-2. Google Scholar

[122]

P. Šittner, Y. Hara and M. Tokuda, Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces,, Metall. Materials Trans., 26 (1995), 2923. doi: 10.1007/BF02669649. Google Scholar

[123]

J. Sokołowski and J. Sprekels, Control problems with state constraints for shape memory alloys,, Math. Methods Appl. Sci., 17 (1994), 943. doi: 10.1002/mma.1670171204. Google Scholar

[124]

A. C. Souza, E. N. Mamiya and N. Zouain, Three-dimensional model for solids undergoing stress-induced tranformations,, Eur. J. Mech. A Solids, 17 (1998), 789. doi: 10.1016/S0997-7538(98)80005-3. Google Scholar

[125]

A. Sozinov, A. A. Likhachev, N. Lanska and K. Ullakko, Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase,, Appl. Phys. Lett., 80 (2002), 1746. doi: 10.1063/1.1458075. Google Scholar

[126]

U. Stefanelli, Analysis of a thermomechanical model for shape memory alloys,, SIAM J. Math. Anal., 37 (2005), 130. doi: 10.1137/S0036141004444251. Google Scholar

[127]

U. Stefanelli, Magnetic control of magnetic shape-memory single crystals,, Phys. B, 407 (2012), 1316. doi: 10.1016/j.physb.2011.06.043. Google Scholar

[128]

P. Thamburaja and L. Anand, Polycrystalline shape-memory materials: Effect of crystallographic texture,, J. Mech. Phys. Solids, 49 (2001), 709. doi: 10.1016/S0022-5096(00)00061-2. Google Scholar

[129]

R. Tickle and R. D. James, Magnetic and magnetomechanical properties of $Ni_2MnGa$,, J. Magn. Magn. Mater., 195 (1999), 627. Google Scholar

[130]

R. A. Vandermeer, J. C. Ogle and W. G. Jr. Northcutt, A phenomenological study of the shape memory effect in polycrystalline Uranium-Niobium alloys,, Metal. Trans A, 12A (1981), 733. Google Scholar

[131]

A. Visintin, Differential Models of Hysteresis,, Applied Mathematical Sciences, (1994). doi: 10.1007/978-3-662-11557-2. Google Scholar

[132]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part I: Existence and discretization in time,, SIAM J. Control Optim., 50 (2012), 2836. doi: 10.1137/110839187. Google Scholar

[133]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, part II: Regularization and differentiability,, preprint, (2011), 1253. Google Scholar

[134]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, part III: Optimality conditions,, preprint, (2011), 1253. Google Scholar

[135]

J. Wang and P. Steinmann, A variational approach towards the modelling of magnetic field-induced strains in magnetic shape memory alloys,, J. Mech. Phys. Solids, 60 (2012), 1179. doi: 10.1016/j.jmps.2012.02.003. Google Scholar

[136]

S. Yoshikawa, I. Pawłow and W. M. Zajaczkowski, Quasi-linear thermoelasticity system arising in shape memory materials,, SIAM J. Math. Anal., 38 (2007), 1733. doi: 10.1137/060653159. Google Scholar

[137]

J. Zimmer, Global existence for a nonlinear system in thermoviscoelasticity with nonconvex energy,, J. Math. Anal. Appl., 292 (2004), 589. doi: 10.1016/j.jmaa.2003.12.010. Google Scholar

show all references

References:
[1]

T. Aiki, A model of 3D shape memory alloy materials,, J. Math. Soc. Japan, 57 (2005), 903. doi: 10.2969/jmsj/1158241940. Google Scholar

[2]

M. Arndt, M. Griebel and T. Roubíček, Modelling and numerical simulation of martensitic transformation in shape memory alloys,, Contin. Mech. Thermodyn., 15 (2003), 463. doi: 10.1007/s00161-003-0127-3. Google Scholar

[3]

M. Arrigoni, F. Auricchio, V. Cacciafesta, L. Petrini and R. Pietrabissa, Cyclic effects in shape-memory alloys: A one-dimensional continuum model,, J. Phys. IV France, 11 (2001), 577. Google Scholar

[4]

E. Artioli, F. Auricchio and R. L. Taylor, A beam finite element for nonlinear analysis of shape memory alloy devices,, in New Trends in Thin Structures: Formulation, (2010), 59. doi: 10.1007/978-3-7091-0231-2_3. Google Scholar

[5]

E. Artioli, S. Marfia, E. Sacco and R. L. Taylor, A nonlinear plate finite element formulation for shape memory alloy applications,, Internat. J. Numer. Meth. Engrg., 89 (2012), 1249. doi: 10.1002/nme.3285. Google Scholar

[6]

F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, Macroscopic modeling of magnetic shape memory alloys,, Oberwolfach Reports, 14 (2010), 771. Google Scholar

[7]

F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, A three-dimensional phenomenological models for magnetic shape memory alloys,, GAMM-Mitt., 34 (2011), 90. doi: 10.1002/gamm.201110014. Google Scholar

[8]

F. Auricchio, A.-L. Bessoud, A. Reali and U. Stefanelli, A phenomenological model for the magneto-mechanical response of single-crystal magnetic shape memory alloys,, preprint IMATI-CNR, (2013). Google Scholar

[9]

F. Auricchio, E. Boatti, A. Reali and U. Stefanelli, The GENERIC formulation of coupled thermomechanical response in shape-memory alloys,, in preparation, (2013). Google Scholar

[10]

F. Auricchio and E. Bonetti, A new "flexible'' 3D macroscopic model for shape memory alloys,, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 277. Google Scholar

[11]

F. Auricchio and J. Lubliner, A uniaxial model for shape-memory alloys,, Internat. J. Solids Structures, 34 (1997), 3601. doi: 10.1016/S0020-7683(96)00232-6. Google Scholar

[12]

F. Auricchio, A. Mielke and U. Stefanelli, A rate-independent model for the isothermal quasi-static evolution of shape-memory materials,, Math. Models Meth. Appl. Sci., 18 (2008), 125. doi: 10.1142/S0218202508002632. Google Scholar

[13]

F. Auricchio, L. Petrini, Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations,, Internat. J. Numer. Methods Engrg., 55 (2002), 1255. doi: 10.1002/nme.619. Google Scholar

[14]

F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations. Part I: Solution algorithm and boundary value problems,, Internat. J. Numer. Meth. Engrg., 61 (2004), 807. doi: 10.1002/nme.1086. Google Scholar

[15]

F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations. Part II: Thermomechanical coupling and hybrid composite applications,, Internat. J. Numer. Meth. Engrg., 61 (2004), 716. doi: 10.1002/nme.1087. Google Scholar

[16]

F. Auricchio, A. Reali and U. Stefanelli, A three-dimensional model describing stress-induces solid phase transformation with residual plasticity,, Int. J. Plasticity, 23 (2007), 207. Google Scholar

[17]

F. Auricchio, A. Reali and U. Stefanelli, A phenomenological 3D model describing stress-induced solid phase transformations with permanent inelasticity,, in Topics on Mathematics for Smart Systems (eds. B. Miara, (2007), 1. doi: 10.1142/9789812706874_0001. Google Scholar

[18]

F. Auricchio, A. Reali and U. Stefanelli, A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties,, Comput. Methods Appl. Mech. Engrg., 198 (2009), 1631. doi: 10.1016/j.cma.2009.01.019. Google Scholar

[19]

F. Auricchio and U. Stefanelli, Well-posedness and approximation for a one-dimensional model for shape memory alloys,, Math. Models Meth. Appl. Sci., 15 (2005), 1301. doi: 10.1142/S0218202505000753. Google Scholar

[20]

K. Bhattacharya, Microstructures of Martensites,, Oxford Series on Materials Modeling, (2003). Google Scholar

[21]

V. Berti, M. Fabrizio and D. Grandi, Phase transitions in shape memory alloys: A non-isothermal Ginzburg-Landau model,, Phys. D, 239 (2010), 95. doi: 10.1016/j.physd.2009.10.005. Google Scholar

[22]

V. Berti, M. Fabrizio and D. Grandi, Hysteresis and phase transitions for one-dimensional and three-dimensional models in shape memory alloys,, J. Math. Phys., 51 (2010). doi: 10.1063/1.3430573. Google Scholar

[23]

A.-L. Bessoud and U. Stefanelli, Magnetic shape memory alloys: Three-dimensional modeling and analysis,, Math. Models Meth. Appl. Sci., 21 (2011), 1043. doi: 10.1142/S0218202511005246. Google Scholar

[24]

A.-L. Bessoud, M. Kružík and U. Stefanelli, A macroscopic model for magnetic shape memory alloys,, Z. Angew. Math. Phys., 64 (2013), 343. doi: 10.1007/s00033-012-0223-y. Google Scholar

[25]

H. Brézis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, Math. Studies, (1973). Google Scholar

[26]

Z. Bo and D. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading. Part III: Evolution of plastic strains and two- way shape memory effect,, Int. J. Engrg. Sci., 37 (1999), 1175. doi: 10.1016/S0020-7225(98)00115-3. Google Scholar

[27]

E. Bonetti, Global solvability of a dissipative Frémond model for shape memory alloys. I. Mathematical formulation and uniqueness,, Quart. Appl. Math., 61 (2003), 759. Google Scholar

[28]

M. Brokate and J. Sprekels, Hysteresis and Phase Transitions,, Applied Mathematical Sciences, (1996). doi: 10.1007/978-1-4612-4048-8. Google Scholar

[29]

W. F. Brown, Jr., Magnetoelastic Interactions,, Springer, (1966). doi: 10.1007/978-3-642-87396-6. Google Scholar

[30]

N. Bubner, J. Sokołowski and J. Sprekels, Optimal boundary control problems for shape memory alloys under state constraints for stress and temperature,, Numer. Funct. Anal. Optim., 19 (1998), 489. doi: 10.1080/01630569808816840. Google Scholar

[31]

P. Colli, Global existence for the three-dimensional Frémond model of shape memory alloys,, Nonlinear Anal., 24 (1995), 1565. doi: 10.1016/0362-546X(94)00097-2. Google Scholar

[32]

P. Colli, M. Frémond and A. Visintin, Thermo-mechanical evolution of shape memory alloys,, Quart. Appl. Math., 48 (1990), 31. Google Scholar

[33]

S. Conti, M. Lenz and M. Rumpf, Macroscopic behaviour of magnetic shape-memory polycrystals and polymer composites,, Mater. Sci. Engrg. A, 481-482 (2008), 481. doi: 10.1016/j.msea.2007.04.126. Google Scholar

[34]

B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials,, Second ed., (2008). doi: 10.1002/9780470386323. Google Scholar

[35]

F. Daghia, M. Fabrizio and D. Grandi, A non isothermal Ginzburg-Landau model for phase transitions in shape memory alloys,, Meccanica, 45 (2010), 797. doi: 10.1007/s11012-010-9286-z. Google Scholar

[36]

R. Delville, B. Malard, J. Pilch, P. Šittner and D. Schryvers, Microstructure changes during non-conventional heat treatment of thin Ni-Ti wires by pulsed electric current studied by transmission electron microscopy,, Acta Mater., 58 (2010), 4503. doi: 10.1016/j.actamat.2010.04.046. Google Scholar

[37]

R. Delville, B. Malard, J. Pilch, P. Šittner and D. Schryvers, Transmission electron microscopy study of microstructural evolution in nanograined Ni-Ti microwires heat treated by electric pulse,, Solid State Phenom., 172-174 (2011), 172. doi: 10.4028/www.scientific.net/SSP.172-174.682. Google Scholar

[38]

A. DeSimone and R. D. James, A constrained theory of magnetoelasticity,, J. Mech. Phys. Solids, 50 (2002), 283. doi: 10.1016/S0022-5096(01)00050-3. Google Scholar

[39]

T. W. Duerig and A. R. Pelton, eds., SMST-2003 Proceedings of the International Conference on Shape Memory and Superelastic Technology Conference,, ASM International, (2003). Google Scholar

[40]

J. Dutkiewicz, Plastic deformation of CuAlMn shape-memory alloys,, J. Mat. Sci., 29 (1994), 6249. doi: 10.1007/BF00354567. Google Scholar

[41]

M. Eleuteri, L. Lussardi and U. Stefanelli, A rate-independent model for permanent inelastic effects in shape memory materials,, Netw. Heterog. Media, 6 (2011), 145. doi: 10.3934/nhm.2011.6.145. Google Scholar

[42]

M. Eleuteri and L. Lussardi, Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials,, Evol. Equ. Control Theory, 3 (2014), 411. doi: 10.3934/eect.2014.3.411. Google Scholar

[43]

M. Eleuteri, L. Lussardi and U. Stefanelli, Thermal control of the Souza-Auricchio model for shape memory alloys,, Discrete Cont. Dyn. Syst.-S, 6 (2013), 369. Google Scholar

[44]

V. Evangelista, S. Marfia and E. Sacco, Phenomenological 3D and 1D consistent models for shape-memory alloy materials,, Comput. Mech., 44 (2009), 405. doi: 10.1007/s00466-009-0381-8. Google Scholar

[45]

V. Evangelista, S. Marfia and E. Sacco, A 3D SMA constitutive model in the framework of finite strain,, Internat. J. Numer. Methods Engrg., 81 (2010), 761. doi: 10.1002/nme.2717. Google Scholar

[46]

F. Falk, Model free energy, mechanics and thermodynamics of shape memory alloys,, Acta Metal., 28 (1980), 1773. doi: 10.1016/0001-6160(80)90030-9. Google Scholar

[47]

F. Falk and P. Konopka, Three-dimensional Landau theory describing the martensitic phase transformation of shape-memory alloys,, Continuum Models of Discrete Systems, 123-125 (1990), 123. doi: 10.4028/www.scientific.net/MSF.123-125.113. Google Scholar

[48]

G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies,, J. Reine Angew. Math., 595 (2006), 55. doi: 10.1515/CRELLE.2006.044. Google Scholar

[49]

M. Frémond, Matériaux à mémoire de forme,, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, 304 (1987), 239. Google Scholar

[50]

M. Frémond, Non-Smooth Thermomechanics,, Springer-Verlag, (2002). doi: 10.1007/978-3-662-04800-9. Google Scholar

[51]

M. Frémond and S. Miyazaki, Shape Memory Alloys,, CISM Courses and Lectures, (1996). Google Scholar

[52]

M. Frémond and E. Rocca, A model for shape memory alloys with the possibility of voids,, Discrete Contin. Dyn. Syst., 27 (2010), 1633. doi: 10.3934/dcds.2010.27.1633. Google Scholar

[53]

S. Frigeri, P. Krejčí and U. Stefanelli, Quasistatic isothermal evolution of shape memory alloys,, Math. Models Meth. Appl. Sci., 21 (2011), 2409. doi: 10.1142/S0218202511005787. Google Scholar

[54]

S. Frigeri and U. Stefanelli, Existence and time-discretization for the finite-strain Souza-Auricchio constitutive model for shape-memory alloys,, Contin. Mech. Thermodyn., 24 (2012), 63. doi: 10.1007/s00161-011-0221-x. Google Scholar

[55]

J.-Y. Gauthier, C. Lexcellent, A. Hubert, J. Abadie and N. Chaillet, Magneto-thermo-mechanical modeling of a magnetic shape memory alloy Ni-Mn-Ga single crystal,, Ann. Solid Struct. Mech., 2 (2001), 19. doi: 10.1007/s12356-011-0014-8. Google Scholar

[56]

S. Govindjee and C. Miehe, A multi-variant martensitic phase transformation model: Formulation and numerical implementation,, Comput. Methods Appl. Mech. Engrg., 191 (2001), 215. doi: 10.1016/S0045-7825(01)00271-7. Google Scholar

[57]

S. Govindjee and E. P. Kasper, A shape memory alloy model for uranium- niobium accounting for plasticity,, J. Intelligent Mat. Syst. Struct., 8 (1997), 815. doi: 10.1177/1045389X9700801001. Google Scholar

[58]

D. Grandi and U. Stefanelli, Modeling microstructure-dependent inelasticity in shape-memory alloys,, preprint, (2013). Google Scholar

[59]

D. Helm and P. Haupt, Shape memory behaviour: Modelling within continuum thermomechanics,, Intern. J. Solids Struct., 40 (2003), 827. doi: 10.1016/S0020-7683(02)00621-2. Google Scholar

[60]

L. Hirsinger and C. Lexcellent, Internal variable model for magneto-mechanical behaviour of ferromagnetic shape memory alloys Ni-Mn-Ga,, J. Phys. IV, 112 (2003), 977. doi: 10.1051/jp4:20031044. Google Scholar

[61]

K.-H. Hoffmann, M. Niezgódka and Z. Songmu, Existence and uniqueness of global solutions to an extended model of the dynamical developments in shape memory alloys,, Nonlinear Anal., 15 (1990), 977. doi: 10.1016/0362-546X(90)90079-V. Google Scholar

[62]

K.-H. Hoffmann and D. Tiba, Control of a plate with nonlinear shape memory alloy reinforcements,, Adv. Math. Sci. Appl., 7 (1997), 427. Google Scholar

[63]

K.-H. Hoffmann and A. Żochowski, Control of the thermoelastic model of a plate activated by shape memory alloy reinforcements,, Math. Methods Appl. Sci., 21 (1998), 589. Google Scholar

[64]

R. D. James and M. Wuttig, Magnetostriction of martensite,, Phil. Mag. A, 77 (1998), 1273. doi: 10.1080/01418619808214252. Google Scholar

[65]

H. E. Karaca, I. Karaman, B. Basaran, Y. I. Chumlyakov and H. J. Maier, Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals,, Acta Mat., 54 (2006), 233. doi: 10.1016/j.actamat.2005.09.004. Google Scholar

[66]

J. Kiang and L. Tong, Modelling of magneto-mechanical behaviour of Ni-Mn-Ga single crystals,, J. Magn. Magn. Mater., 292 (2005), 394. doi: 10.1016/j.jmmm.2004.11.481. Google Scholar

[67]

B. Kiefer, A Phenomelogical Model for Magnetic Shape Memory Alloys,, Ph.D Thesis, (2006). Google Scholar

[68]

B. Kiefer and D. C. Lagoudas, Modeling the coupled strain and magnetization response of magnetic shape memory alloys under magnetomechanical loading,, J. Intell. Mater. Syst. Struct., 20 (2009), 143. doi: 10.1177/1045389X07086688. Google Scholar

[69]

B. Kiefer, H. Karaca, D. C. Lagoudas and I. Karaman, Characterization and modeling of the magnetic field-induced strain and work output in Ni$_2$MnGa magnetic shape memory alloys,, J. Magn. Magn. Mater., 312 (2007), 164. Google Scholar

[70]

P. Krejčí and U. Stefanelli, Existence and nonexistence for the full thermomechanical Souza-Auricchio model of shape memory wires,, Math. Mech. Solids, 16 (2011), 349. doi: 10.1177/1081286510386935. Google Scholar

[71]

P. Krejčí and U. Stefanelli, Well-posedness of a thermo-mechanical model for shape memory alloys under tension,, M2AN Math. Model. Numer. Anal., 44 (2010), 1239. doi: 10.1051/m2an/2010024. Google Scholar

[72]

M. Kružík and J. Zimmer, A model of shape memory alloys taking into account plasticity,, IMA J. Appl. Math., 76 (2011), 193. doi: 10.1093/imamat/hxq058. Google Scholar

[73]

D. C. Lagoudas and P. Entchev, Modeling of transformation-induced plas- ticity and its effect on the behavior of porous shape memory alloys. Part I: Constitutive model for fully dense SMAs,, Mech. Mat., 36 (2004), 865. Google Scholar

[74]

D. C. Lagoudas, P. B. Entchev, P. Popov, E. Patoor, L. C. Brinson and X. Gao, Shape memory alloys, Part II: Modeling of polycrystals,, Mech. Materials, 38 (2006), 430. doi: 10.1016/j.mechmat.2005.08.003. Google Scholar

[75]

E. Lee, Elastic-plastic deformation at finite strains,, J. Appl. Mech, 36 (1969), 1. doi: 10.1115/1.3564580. Google Scholar

[76]

V. I. Levitas, Thermomechanical theory of martensitic phase transformations in inelastic materials,, Intern. J. Solids Struct., 35 (1998), 889. doi: 10.1016/S0020-7683(97)00089-9. Google Scholar

[77]

Ch. Lexcellent, Shape-Memory Alloys Handbook,, Wiley, (2013). doi: 10.1002/9781118577776. Google Scholar

[78]

A. A. Likhachev and K. Ullakko, Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni-Mn-Ga shape memory alloy,, Phys. Lett. A, 275 (2000), 142. doi: 10.1016/S0375-9601(00)00561-2. Google Scholar

[79]

B. Malard, J. Pilch, P. Šittner, R. Delville and C. Curfs, In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires,, Acta Mater., 59 (2011), 1542. doi: 10.1016/j.actamat.2010.11.018. Google Scholar

[80]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems,, Calc. Var. Partial Differential Equations, 22 (2005), 73. doi: 10.1007/s00526-004-0267-8. Google Scholar

[81]

M. Maraldi, L. Molari and D. Grandi, A non-isothermal phase-field model for shape memory alloys: Numerical simulations of superelasticity and shape memory effect under stress- controlled conditions,, J. Intelligent Mat. Syst. Struct., 23 (2012), 1083. doi: 10.1177/1045389X12442012. Google Scholar

[82]

M. Maraldi, L. Molari and D. Grandi, A macroscale, phase-field model for shape memory alloys with non-isothermal effects: Influence of strain-rate and environmental conditions on the mechanical response,, Acta Mat., 60 (2012), 179. Google Scholar

[83]

C. Miehe, B. Kiefer and D. Rosato, An incremental variational formulation of dissipative magnetostriction at the macroscopic continuum level,, Internat. J. Solids Struct., 48 (2011), 1846. doi: 10.1016/j.ijsolstr.2011.02.011. Google Scholar

[84]

A. Mielke, Evolution of rate-independent systems,, in Handbook of Differential Equations, (2005), 461. Google Scholar

[85]

A. Mielke, Formulation of thermoelastic dissipative material behavior using GENERIC,, Contin. Mech. Thermodyn., 23 (2011), 233. doi: 10.1007/s00161-010-0179-0. Google Scholar

[86]

A. Mielke, On thermodynamically consistent models and gradient structures for thermoplasticity,, GAMM Mitt., 34 (2011), 51. doi: 10.1002/gamm.201110008. Google Scholar

[87]

A. Mielke, L. Paoli and A. Petrov, On existence and approximation for a 3D model of thermally induced phase transformations in shape-memory alloys,, SIAM J. Math. Anal., 41 (2009), 1388. doi: 10.1137/080726215. Google Scholar

[88]

A. Mielke, L. Paoli, A. Petrov, U. Stefanelli, Error estimates for space-time discretizations of a rate-independent variational inequality,, SIAM J. Numer. Anal., 48 (2010), 1625. doi: 10.1137/090750238. Google Scholar

[89]

A. Mielke, L. Paoli, A. Petrov and U. Stefanelli, Error bounds for space-time discretizations of a 3d model for shape-memory materials,, in IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials (ed. K. Hackl), (2010), 185. doi: 10.1007/978-90-481-9195-6_14. Google Scholar

[90]

A. Mielke and A. Petrov, Thermally driven phase transformation in shape-memory alloys,, Adv. Math. Sci. Appl., 17 (2007), 667. Google Scholar

[91]

A. Mielke and F. Rindler, Reverse approximation of energetic solutions to rate-independent processes,, NoDEA Nonlinear Differential Equations Appl., 16 (2009), 17. doi: 10.1007/s00030-008-7065-5. Google Scholar

[92]

A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems,, Calc. Var. Partial Differential Equations, 31 (2008), 387. doi: 10.1007/s00526-007-0119-4. Google Scholar

[93]

A. Mielke and U. Stefanelli, Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity,, J. Eur. Math. Soc. (JEMS), 15 (2013), 923. doi: 10.4171/JEMS/381. Google Scholar

[94]

A. Mielke and F. Theil, On rate-independent hysteresis models,, NoDEA Nonlinear Diff. Equations Applications, 11 (2004), 151. doi: 10.1007/s00030-003-1052-7. Google Scholar

[95]

S. J. Murray, M. Marioni, P. G. Tello, S. M. Allen and R. C. O'Handley, Giant magnetic-field-induced strain in Ni-Mn-Ga crystals: Experimental results and modeling,, J. Magn. Magn. Mater., 226-230 (2001), 226. doi: 10.1016/S0304-8853(00)00611-9. Google Scholar

[96]

S. J. Murray, S. M. Allen, R. C. O'Handley and T. A. Lograsso, Magnetomechanical performance and mechanical properties of Ni-Mn-Ga ferromagnetic shape memory alloys,, in SPIE Proceedings 3992, (3992). doi: 10.1117/12.388253. Google Scholar

[97]

S. J. Murray, R. C. O'Handley and S. M. Allen, Model for discontinuous actuation of ferromagnetic shape memory alloy under stress,, J. Appl. Phys., 89 (2000), 1295. doi: 10.1063/1.1285867. Google Scholar

[98]

R. C. O'Handley, Model for strain and magnetization in magnetic shape-memory alloys,, J. Appl. Phys., 83 (1998), 3263. Google Scholar

[99]

R. C. O'Handley, S. J. Murray, M. Marioni, H. Nembach and S. M. Allen, Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials,, J. Appl. Phys., 87 (): 4712. Google Scholar

[100]

A. Paiva, M. A. Savi, A. M. B. Braga and P. M. C. L. Pacheco, A constitutive model for shape memory alloys considering tensile-compressive asymmetry and plasticity,, Int. J. Solids Struct., 42 (2005), 3439. doi: 10.1016/j.ijsolstr.2004.11.006. Google Scholar

[101]

I. Pawłow and W. M. Zajaczkowski, Global existence to a three-dimensional non-linear thermoelasticity system arising in shape memory materials,, Math. Methods Appl. Sci., 28 (2005), 407. doi: 10.1002/mma.574. Google Scholar

[102]

L. Paoli and A. Petrov, Global existence result for phase transformations with heat transfer in shape memory alloys,, preprint, (2011). Google Scholar

[103]

L. Paoli and A. Petrov, Existence result for a class of generalized standard materials with thermomechanical coupling,, preprint, (2011). Google Scholar

[104]

L. Paoli and A. Petrov, Thermodynamics of multiphase problems in viscoelasticity,, GAMM-Mitt., 35 (2012), 75. doi: 10.1002/gamm.201210006. Google Scholar

[105]

L. Paoli and A. Petrov, Global existence result for thermoviscoelastic problems with hysteresis,, Nonlinear Anal. Real World Appl., 13 (2012), 524. doi: 10.1016/j.nonrwa.2011.07.018. Google Scholar

[106]

L. Paoli and A. Petrov, Solvability for a class of generalized standard materials with thermomechanical coupling,, Nonlinear Anal. Real World Appl., 14 (2013), 111. doi: 10.1016/j.nonrwa.2012.05.006. Google Scholar

[107]

I. Pawłow and A. Żochowski, A Control Problem for a Thermoelastic System in Shape Memory Materials. Free Boundary Problems,, (Japanese), (2001), 8. Google Scholar

[108]

B. Peultier, T. Ben Zineb and E. Patoor, Macroscopic constitutive law for SMA: Application to structure analysis by FEM,, Materials Sci. Engrg. A, 438-440 (2006), 438. doi: 10.1016/j.msea.2006.01.104. Google Scholar

[109]

P. Popov and D. C. Lagoudas, A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite,, Int. J. Plasticity, 23 (2007), 1679. doi: 10.1016/j.ijplas.2007.03.011. Google Scholar

[110]

B. Raniecki and Ch. Lexcellent, $R_L$ models of pseudoelasticity and their specification for some shape-memory solids,, Eur. J. Mech. A Solids, 13 (1994), 21. Google Scholar

[111]

S. Reese and D. Christ, Finite deformation pseudo-elasticity of shape memory alloys - Constitutive modelling and finite element implementation,, Int. J. Plasticity, 24 (2008), 455. doi: 10.1016/j.ijplas.2007.05.005. Google Scholar

[112]

F. Rindler, Optimal control for nonconvex rate-independent evolution processes,, SIAM J. Control Optim., 47 (2008), 2773. doi: 10.1137/080718711. Google Scholar

[113]

F. Rindler, Approximation of rate-independent optimal control problems,, SIAM J. Numer. Anal., 47 (2009), 3884. doi: 10.1137/080744050. Google Scholar

[114]

T.Roubíček, Models of microstructure evolution in shape memory alloys,, in Nonlinear Homogenization and its Appl.to Composites, (2004), 269. doi: 10.1007/1-4020-2623-4_12. Google Scholar

[115]

T. Roubíček, Rate-independent processes in viscous solids at small strains,, Math. Methods Appl. Sci., 32 (2009), 825. doi: 10.1002/mma.1069. Google Scholar

[116]

T. Roubíček, Thermodynamics of rate-independent processes in viscous solids at small strains,, SIAM J. Math. Anal., 42 (2010), 256. doi: 10.1137/080729992. Google Scholar

[117]

T. Roubíček, Approximation in multiscale modelling of microstructure evolution in shape-memory alloys,, Cont. Mech. Thermodynam., 23 (2011), 491. doi: 10.1007/s00161-011-0190-0. Google Scholar

[118]

T. Roubíček, Nonlinearly coupled thermo-visco-elasticity,, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1243. doi: 10.1007/s00030-012-0207-9. Google Scholar

[119]

T. Roubíček and U. Stefanelli, Magnetic shape-memory alloys: Thermomechanical modeling and analysis,, preprint, (2013). Google Scholar

[120]

T. Roubíček and G. Tomassetti, Thermodynamics of shape-memory alloys under electric current,, Z. Angew. Math. Phys., 61 (2010), 1. doi: 10.1007/s00033-009-0007-1. Google Scholar

[121]

T. Roubíček and G. Tomassetti, Phase transformations in electrically conductive ferromagnetic shape-memory alloys, their thermodynamics and analysis,, Arch. Ration. Mech. Anal., 210 (2013), 1. doi: 10.1007/s00205-013-0648-2. Google Scholar

[122]

P. Šittner, Y. Hara and M. Tokuda, Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces,, Metall. Materials Trans., 26 (1995), 2923. doi: 10.1007/BF02669649. Google Scholar

[123]

J. Sokołowski and J. Sprekels, Control problems with state constraints for shape memory alloys,, Math. Methods Appl. Sci., 17 (1994), 943. doi: 10.1002/mma.1670171204. Google Scholar

[124]

A. C. Souza, E. N. Mamiya and N. Zouain, Three-dimensional model for solids undergoing stress-induced tranformations,, Eur. J. Mech. A Solids, 17 (1998), 789. doi: 10.1016/S0997-7538(98)80005-3. Google Scholar

[125]

A. Sozinov, A. A. Likhachev, N. Lanska and K. Ullakko, Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase,, Appl. Phys. Lett., 80 (2002), 1746. doi: 10.1063/1.1458075. Google Scholar

[126]

U. Stefanelli, Analysis of a thermomechanical model for shape memory alloys,, SIAM J. Math. Anal., 37 (2005), 130. doi: 10.1137/S0036141004444251. Google Scholar

[127]

U. Stefanelli, Magnetic control of magnetic shape-memory single crystals,, Phys. B, 407 (2012), 1316. doi: 10.1016/j.physb.2011.06.043. Google Scholar

[128]

P. Thamburaja and L. Anand, Polycrystalline shape-memory materials: Effect of crystallographic texture,, J. Mech. Phys. Solids, 49 (2001), 709. doi: 10.1016/S0022-5096(00)00061-2. Google Scholar

[129]

R. Tickle and R. D. James, Magnetic and magnetomechanical properties of $Ni_2MnGa$,, J. Magn. Magn. Mater., 195 (1999), 627. Google Scholar

[130]

R. A. Vandermeer, J. C. Ogle and W. G. Jr. Northcutt, A phenomenological study of the shape memory effect in polycrystalline Uranium-Niobium alloys,, Metal. Trans A, 12A (1981), 733. Google Scholar

[131]

A. Visintin, Differential Models of Hysteresis,, Applied Mathematical Sciences, (1994). doi: 10.1007/978-3-662-11557-2. Google Scholar

[132]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, Part I: Existence and discretization in time,, SIAM J. Control Optim., 50 (2012), 2836. doi: 10.1137/110839187. Google Scholar

[133]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, part II: Regularization and differentiability,, preprint, (2011), 1253. Google Scholar

[134]

G. Wachsmuth, Optimal control of quasistatic plasticity with linear kinematic hardening, part III: Optimality conditions,, preprint, (2011), 1253. Google Scholar

[135]

J. Wang and P. Steinmann, A variational approach towards the modelling of magnetic field-induced strains in magnetic shape memory alloys,, J. Mech. Phys. Solids, 60 (2012), 1179. doi: 10.1016/j.jmps.2012.02.003. Google Scholar

[136]

S. Yoshikawa, I. Pawłow and W. M. Zajaczkowski, Quasi-linear thermoelasticity system arising in shape memory materials,, SIAM J. Math. Anal., 38 (2007), 1733. doi: 10.1137/060653159. Google Scholar

[137]

J. Zimmer, Global existence for a nonlinear system in thermoviscoelasticity with nonconvex energy,, J. Math. Anal. Appl., 292 (2004), 589. doi: 10.1016/j.jmaa.2003.12.010. Google Scholar

[1]

Tomáš Roubíček. Modelling of thermodynamics of martensitic transformation in shape-memory alloys. Conference Publications, 2007, 2007 (Special) : 892-902. doi: 10.3934/proc.2007.2007.892

[2]

Michel Frémond, Elisabetta Rocca. A model for shape memory alloys with the possibility of voids. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1633-1659. doi: 10.3934/dcds.2010.27.1633

[3]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. Thermal control of the Souza-Auricchio model for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 369-386. doi: 10.3934/dcdss.2013.6.369

[4]

Linxiang Wang, Roderick Melnik. Dynamics of shape memory alloys patches with mechanically induced transformations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1237-1252. doi: 10.3934/dcds.2006.15.1237

[5]

Shuji Yoshikawa, Irena Pawłow, Wojciech M. Zajączkowski. A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1093-1115. doi: 10.3934/cpaa.2009.8.1093

[6]

Alessia Berti, Claudio Giorgi, Elena Vuk. Free energies and pseudo-elastic transitions for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 293-316. doi: 10.3934/dcdss.2013.6.293

[7]

Ferdinando Auricchio, Elena Bonetti. A new "flexible" 3D macroscopic model for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 277-291. doi: 10.3934/dcdss.2013.6.277

[8]

Toyohiko Aiki, Martijn Anthonissen, Adrian Muntean. On a one-dimensional shape-memory alloy model in its fast-temperature-activation limit. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 15-28. doi: 10.3934/dcdss.2012.5.15

[9]

Takashi Suzuki, Shuji Yoshikawa. Stability of the steady state for multi-dimensional thermoelastic systems of shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 209-217. doi: 10.3934/dcdss.2012.5.209

[10]

Ken Shirakawa. Asymptotic stability for dynamical systems associated with the one-dimensional Frémond model of shape memory alloys. Conference Publications, 2003, 2003 (Special) : 798-808. doi: 10.3934/proc.2003.2003.798

[11]

Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 1-13. doi: 10.3934/dcdss.2012.5.1

[12]

Toyohiko Aiki. The position of the joint of shape memory alloy and bias springs. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 239-246. doi: 10.3934/dcdss.2011.4.239

[13]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145

[14]

Chiara Corsato, Colette De Coster, Pierpaolo Omari. Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Conference Publications, 2015, 2015 (special) : 297-303. doi: 10.3934/proc.2015.0297

[15]

Martha Garlick, James Powell, David Eyre, Thomas Robbins. Mathematically modeling PCR: An asymptotic approximation with potential for optimization. Mathematical Biosciences & Engineering, 2010, 7 (2) : 363-384. doi: 10.3934/mbe.2010.7.363

[16]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

[17]

Luca Lussardi. On a Poisson's equation arising from magnetism. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 769-772. doi: 10.3934/dcdss.2015.8.769

[18]

Lori Badea, Marius Cocou. Approximation results and subspace correction algorithms for implicit variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1507-1524. doi: 10.3934/dcdss.2013.6.1507

[19]

Xiaojun Chen, Guihua Lin. CVaR-based formulation and approximation method for stochastic variational inequalities. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 35-48. doi: 10.3934/naco.2011.1.35

[20]

Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]