June  2015, 8(3): 619-647. doi: 10.3934/dcdss.2015.8.619

Asymptotic boundary element methods for thin conducting sheets

1. 

Research Center MATHEON, Institut für Mathematik, Technische Universität Berlin, 10623 Berlin, Germany

2. 

Seminar for Applied Mathematics, ETH Zurich, 8092 Zürich, Switzerland

Received  November 2013 Revised  June 2014 Published  October 2014

Various asymptotic models for thin conducting sheets in computational electromagnetics describe them as closed hyper-surfaces equipped with linear local transmission conditions for the traces of electric and magnetic fields. The transmission conditions turn out to be singularly perturbed with respect to limit values of parameters depending on sheet thickness and conductivity. We consider the reformulation of the resulting transmission problems into boundary integral equations (BIE) and their Galerkin discretization by means of low-order boundary elements. We establish stability of the BIE and provide a priori $h$-convergence estimates.
Citation: Kersten Schmidt, Ralf Hiptmair. Asymptotic boundary element methods for thin conducting sheets. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 619-647. doi: 10.3934/dcdss.2015.8.619
References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975). Google Scholar

[2]

A. Bendali, Boundary element solution of scattering problems relative to a generalized impedance boundary condition,, in Partial differential equations: Theory and numerical solution., 406 (2000), 10. Google Scholar

[3]

A. Bendali and K. Lemrabet, Asymptotic analysis of the scattering of a time-harmonic electromagnetic wave by a perfectly conducting metal coated with a thin dielectric shell,, Asymptotic Analysis, 57 (2008), 199. Google Scholar

[4]

A. Bendali and K. Lemrabet, The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation,, SIAM J. Appl. Math., 56 (1996), 1664. doi: 10.1137/S0036139995281822. Google Scholar

[5]

D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics,, 3rd edition, (2007). doi: 10.1088/0957-0233/13/9/704. Google Scholar

[6]

Concepts Development Team, Webpage of Numerical C++ Library Concepts 2,, URL , (2014). Google Scholar

[7]

B. Engquist and J.-C. Nédélec, Effective boundary conditions for acoustic and electromagnetic scattering in thin layers,, Technical report, (1993). Google Scholar

[8]

P. Frauenfelder and C. Lage, Concepts - An Object-Oriented Software Package for Partial Differential Equations,, Math. Model. Numer. Anal., 36 (2002), 937. doi: 10.1051/m2an:2002036. Google Scholar

[9]

H. Haddar, P. Joly and H. Nguyen, Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case,, Math. Models Methods Appl. Sci, 15 (2005), 1273. doi: 10.1142/S021820250500073X. Google Scholar

[10]

H. Haddar, P. Joly and H.-M. Nguyen, Generalized impedance boundary conditions for scattering problems from strongly absorbing obstacles: the case of Maxwell's equations,, Math. Models Meth. Appl. Sci., 18 (2008), 1787. doi: 10.1142/S0218202508003194. Google Scholar

[11]

T. Levi-Civita, La teoria elettrodinamica di Hertz di fronte ai fenomeni di induzione,, Rend. Lincei (5), 11 (1902), 75. Google Scholar

[12]

I. Mayergoyz and G. Bedrosian, On calculation of 3-D eddy currents in conducting and magnetic shells,, Magnetics, 31 (1995), 1319. doi: 10.1109/20.376271. Google Scholar

[13]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations,, Cambridge University Press, (2000). Google Scholar

[14]

T. Nakata, N. Takahashi, K. Fujiwara and Y. Shiraki, 3D magnetic field analysis using special elements,, Magnetics, 26 (1990), 2379. doi: 10.1109/20.104737. Google Scholar

[15]

C. Poignard, Asymptotics for steady-state voltage potentials in a bidimensional highly contrasted medium with thin layer,, Math. Meth. Appl. Sci., 31 (2008), 443. doi: 10.1002/mma.923. Google Scholar

[16]

C. Poignard, Approximate transmission conditions through a weakly oscillating thin layer,, Math. Meth. Appl. Sci., 32 (2009), 435. doi: 10.1002/mma.1045. Google Scholar

[17]

S. Sauter and C. Schwab, Boundary Element Methods,, Springer-Verlag, (2011). doi: 10.1007/978-3-540-68093-2. Google Scholar

[18]

K. Schmidt and A. Chernov, A unified analysis of transmission conditions for thin conducting sheets in the time-harmonic eddy current model,, SIAM J. Appl. Math, 73 (2013), 1980. doi: 10.1137/120901398. Google Scholar

[19]

K. Schmidt and R. Hiptmair, Asymptotic boundary element methods for thin conducting sheets,, Preprint 2013-15, (2013), 2013. Google Scholar

[20]

K. Schmidt and A. Chernov, Robust Families of Transmission Conditions of High Order for Thin Conducting Sheets,, INS Report 1102, (1102). Google Scholar

[21]

K. Schmidt and S. Tordeux, Asymptotic modelling of conductive thin sheets,, Z. Angew. Math. Phys., 61 (2010), 603. doi: 10.1007/s00033-009-0043-x. Google Scholar

[22]

K. Schmidt and S. Tordeux, High order transmission conditions for thin conductive sheets in magneto-quasistatics,, ESAIM: M2AN, 45 (2011), 1115. doi: 10.1051/m2an/2011009. Google Scholar

[23]

O. Steinbach, Numerische Näherungsverfahren für elliptische Randwertprobleme. Finite Elemente und Randelemente,, B.G. Teubner-Verlag, (2003). Google Scholar

[24]

O. Tozoni and I. Mayergoyz, Calculation of three-dimensional electromagnetic fields,, Technika, (1974). Google Scholar

[25]

L. Vernhet, generalized impedance boundary condition,, Math. Meth. Appl. Sci., 22 (1999), 587. Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975). Google Scholar

[2]

A. Bendali, Boundary element solution of scattering problems relative to a generalized impedance boundary condition,, in Partial differential equations: Theory and numerical solution., 406 (2000), 10. Google Scholar

[3]

A. Bendali and K. Lemrabet, Asymptotic analysis of the scattering of a time-harmonic electromagnetic wave by a perfectly conducting metal coated with a thin dielectric shell,, Asymptotic Analysis, 57 (2008), 199. Google Scholar

[4]

A. Bendali and K. Lemrabet, The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation,, SIAM J. Appl. Math., 56 (1996), 1664. doi: 10.1137/S0036139995281822. Google Scholar

[5]

D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics,, 3rd edition, (2007). doi: 10.1088/0957-0233/13/9/704. Google Scholar

[6]

Concepts Development Team, Webpage of Numerical C++ Library Concepts 2,, URL , (2014). Google Scholar

[7]

B. Engquist and J.-C. Nédélec, Effective boundary conditions for acoustic and electromagnetic scattering in thin layers,, Technical report, (1993). Google Scholar

[8]

P. Frauenfelder and C. Lage, Concepts - An Object-Oriented Software Package for Partial Differential Equations,, Math. Model. Numer. Anal., 36 (2002), 937. doi: 10.1051/m2an:2002036. Google Scholar

[9]

H. Haddar, P. Joly and H. Nguyen, Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case,, Math. Models Methods Appl. Sci, 15 (2005), 1273. doi: 10.1142/S021820250500073X. Google Scholar

[10]

H. Haddar, P. Joly and H.-M. Nguyen, Generalized impedance boundary conditions for scattering problems from strongly absorbing obstacles: the case of Maxwell's equations,, Math. Models Meth. Appl. Sci., 18 (2008), 1787. doi: 10.1142/S0218202508003194. Google Scholar

[11]

T. Levi-Civita, La teoria elettrodinamica di Hertz di fronte ai fenomeni di induzione,, Rend. Lincei (5), 11 (1902), 75. Google Scholar

[12]

I. Mayergoyz and G. Bedrosian, On calculation of 3-D eddy currents in conducting and magnetic shells,, Magnetics, 31 (1995), 1319. doi: 10.1109/20.376271. Google Scholar

[13]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations,, Cambridge University Press, (2000). Google Scholar

[14]

T. Nakata, N. Takahashi, K. Fujiwara and Y. Shiraki, 3D magnetic field analysis using special elements,, Magnetics, 26 (1990), 2379. doi: 10.1109/20.104737. Google Scholar

[15]

C. Poignard, Asymptotics for steady-state voltage potentials in a bidimensional highly contrasted medium with thin layer,, Math. Meth. Appl. Sci., 31 (2008), 443. doi: 10.1002/mma.923. Google Scholar

[16]

C. Poignard, Approximate transmission conditions through a weakly oscillating thin layer,, Math. Meth. Appl. Sci., 32 (2009), 435. doi: 10.1002/mma.1045. Google Scholar

[17]

S. Sauter and C. Schwab, Boundary Element Methods,, Springer-Verlag, (2011). doi: 10.1007/978-3-540-68093-2. Google Scholar

[18]

K. Schmidt and A. Chernov, A unified analysis of transmission conditions for thin conducting sheets in the time-harmonic eddy current model,, SIAM J. Appl. Math, 73 (2013), 1980. doi: 10.1137/120901398. Google Scholar

[19]

K. Schmidt and R. Hiptmair, Asymptotic boundary element methods for thin conducting sheets,, Preprint 2013-15, (2013), 2013. Google Scholar

[20]

K. Schmidt and A. Chernov, Robust Families of Transmission Conditions of High Order for Thin Conducting Sheets,, INS Report 1102, (1102). Google Scholar

[21]

K. Schmidt and S. Tordeux, Asymptotic modelling of conductive thin sheets,, Z. Angew. Math. Phys., 61 (2010), 603. doi: 10.1007/s00033-009-0043-x. Google Scholar

[22]

K. Schmidt and S. Tordeux, High order transmission conditions for thin conductive sheets in magneto-quasistatics,, ESAIM: M2AN, 45 (2011), 1115. doi: 10.1051/m2an/2011009. Google Scholar

[23]

O. Steinbach, Numerische Näherungsverfahren für elliptische Randwertprobleme. Finite Elemente und Randelemente,, B.G. Teubner-Verlag, (2003). Google Scholar

[24]

O. Tozoni and I. Mayergoyz, Calculation of three-dimensional electromagnetic fields,, Technika, (1974). Google Scholar

[25]

L. Vernhet, generalized impedance boundary condition,, Math. Meth. Appl. Sci., 22 (1999), 587. Google Scholar

[1]

Fioralba Cakoni, Shari Moskow, Scott Rome. Asymptotic expansions of transmission eigenvalues for small perturbations of media with generally signed contrast. Inverse Problems & Imaging, 2018, 12 (4) : 971-992. doi: 10.3934/ipi.2018041

[2]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[3]

Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861

[4]

Masaru Ikehata. On finding an obstacle with the Leontovich boundary condition via the time domain enclosure method. Inverse Problems & Imaging, 2017, 11 (1) : 99-123. doi: 10.3934/ipi.2017006

[5]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[6]

Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89

[7]

Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393

[8]

Sigurd Angenent. Formal asymptotic expansions for symmetric ancient ovals in mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 1-8. doi: 10.3934/nhm.2013.8.1

[9]

S. E. Pastukhova. Asymptotic analysis in elasticity problems on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (3) : 577-604. doi: 10.3934/nhm.2009.4.577

[10]

Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123

[11]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

[12]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[13]

Jie Wang, Xiaoqiang Wang. New asymptotic analysis method for phase field models in moving boundary problem with surface tension. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3185-3213. doi: 10.3934/dcdsb.2015.20.3185

[14]

Grigory Panasenko, Ruxandra Stavre. Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel. Networks & Heterogeneous Media, 2010, 5 (4) : 783-812. doi: 10.3934/nhm.2010.5.783

[15]

Rejeb Hadiji, Ken Shirakawa. Asymptotic analysis for micromagnetics of thin films governed by indefinite material coefficients. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1345-1361. doi: 10.3934/cpaa.2010.9.1345

[16]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[17]

Matthieu Alfaro, Hiroshi Matano. On the validity of formal asymptotic expansions in Allen-Cahn equation and FitzHugh-Nagumo system with generic initial data. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1639-1649. doi: 10.3934/dcdsb.2012.17.1639

[18]

Markus Gahn, Maria Neuss-Radu, Peter Knabner. Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface. Networks & Heterogeneous Media, 2018, 13 (4) : 609-640. doi: 10.3934/nhm.2018028

[19]

C. Bourdarias, M. Gisclon, A. Omrane. Transmission boundary conditions in a model-kinetic decomposition. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 69-94. doi: 10.3934/dcdsb.2002.2.69

[20]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]