June  2015, 8(3): 563-577. doi: 10.3934/dcdss.2015.8.563

The factorization method for scatterers with different physical properties

1. 

Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China

Received  November 2013 Revised  January 2014 Published  October 2014

The scattering of time-harmonic acoustic plane waves by a mixed type scatterer is considered. Such a scatterer is given as the union of several components with different physical properties. Some of them are impenetrable obstacles with Dirichlet or impedance boundary conditions, while the others are penetrable inhomogeneous media with compact support. This paper is concerned with modifications of the factorization method for the following two basic cases, one is the scattering by a priori separated sound-soft and sound-hard obstacles, the other one is the scattering by a scatterer with impenetrable (Dirichlet) and penetrable components. The other cases can be dealt with similarly. Finally, some numerical experiments are presented to demonstrate the feasibility and effectiveness of the modified factorization methods.
Citation: Xiaodong Liu. The factorization method for scatterers with different physical properties. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 563-577. doi: 10.3934/dcdss.2015.8.563
References:
[1]

O. Bondarenko, A. Kirsch and X. Liu, The Factorization method for inverse acoustic scattering in a layered medium,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/4/045010. Google Scholar

[2]

O. Bondarenko and X. Liu, The Factorization method for inverse obstacle scattering with conductive boundary condition,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/9/095021. Google Scholar

[3]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, 3rd Edition, (2012). doi: 10.1007/978-1-4614-4942-3. Google Scholar

[4]

N. Grinberg and A. Kirsch, The Linear sampling method in inverse obstacle scattering for impedance boundary conditions,, Journal of Inverse and Ill-Posed Problems, 10 (2002), 171. doi: 10.1515/jiip.2002.10.2.171. Google Scholar

[5]

N. Grinberg and A. Kirsch, The factorization method for obstacles with a-prior separated sound-soft and sound-hard parts,, Math. Comput. in Simul., 66 (2004), 267. doi: 10.1016/j.matcom.2004.02.011. Google Scholar

[6]

A. Kirsch, Charaterization of the shape of a scattering obstacle using the spectral data of the far field operator,, Inverse Problems, 14 (1998), 1489. doi: 10.1088/0266-5611/14/6/009. Google Scholar

[7]

A. Kirsch, Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory,, Inverse Problems, 15 (1999), 413. doi: 10.1088/0266-5611/15/2/005. Google Scholar

[8]

A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media,, Inverse Problems, 18 (2002), 1025. doi: 10.1088/0266-5611/18/4/306. Google Scholar

[9]

A. Kirsch, An introduction to the Mathematical Theory of Inverse Problems,, 2nd Edition, (2011). doi: 10.1007/978-1-4419-8474-6. Google Scholar

[10]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008). Google Scholar

[11]

A. Kirsch and X. Liu, The factorization method for inverse acoustic scattering by a penetrable anisotropic obstacle,, Math. Meth. Appl. Sci., 37 (2014), 1159. doi: 10.1002/mma.2877. Google Scholar

[12]

A. Kirsch and X. Liu, Direct and inverse acoustic scattering by a mixed-type scatterer,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/6/065005. Google Scholar

[13]

A. Kirsch and X. Liu, A modification of the factorization method for the classical acoustic inverse scattering problems,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/3/035013. Google Scholar

[14]

A. Lechleiter, The factorization method is independent of transmission eigenvalues,, Inverse Problems Imaging, 3 (2009), 123. doi: 10.3934/ipi.2009.3.123. Google Scholar

[15]

X. Liu, The factorization method for cavities,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/1/015006. Google Scholar

[16]

W. Mclean, Strongly Elliptic Systems and Boundary Integral Equation,, Cambridge University Press, (2000). Google Scholar

[17]

D. L. Nguyen, Spectral Methods for Direct and Inverse Scattering from Periodic Structures,, PhD thesis, (2012). Google Scholar

[18]

J. Yang, B. Zhang and H. Zhang, The factorization method for reconstructing a penetrable obstacle with unknown buried objects,, SIAM J. Appl. Math., 73 (2013), 617. doi: 10.1137/120883724. Google Scholar

show all references

References:
[1]

O. Bondarenko, A. Kirsch and X. Liu, The Factorization method for inverse acoustic scattering in a layered medium,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/4/045010. Google Scholar

[2]

O. Bondarenko and X. Liu, The Factorization method for inverse obstacle scattering with conductive boundary condition,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/9/095021. Google Scholar

[3]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, 3rd Edition, (2012). doi: 10.1007/978-1-4614-4942-3. Google Scholar

[4]

N. Grinberg and A. Kirsch, The Linear sampling method in inverse obstacle scattering for impedance boundary conditions,, Journal of Inverse and Ill-Posed Problems, 10 (2002), 171. doi: 10.1515/jiip.2002.10.2.171. Google Scholar

[5]

N. Grinberg and A. Kirsch, The factorization method for obstacles with a-prior separated sound-soft and sound-hard parts,, Math. Comput. in Simul., 66 (2004), 267. doi: 10.1016/j.matcom.2004.02.011. Google Scholar

[6]

A. Kirsch, Charaterization of the shape of a scattering obstacle using the spectral data of the far field operator,, Inverse Problems, 14 (1998), 1489. doi: 10.1088/0266-5611/14/6/009. Google Scholar

[7]

A. Kirsch, Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory,, Inverse Problems, 15 (1999), 413. doi: 10.1088/0266-5611/15/2/005. Google Scholar

[8]

A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media,, Inverse Problems, 18 (2002), 1025. doi: 10.1088/0266-5611/18/4/306. Google Scholar

[9]

A. Kirsch, An introduction to the Mathematical Theory of Inverse Problems,, 2nd Edition, (2011). doi: 10.1007/978-1-4419-8474-6. Google Scholar

[10]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008). Google Scholar

[11]

A. Kirsch and X. Liu, The factorization method for inverse acoustic scattering by a penetrable anisotropic obstacle,, Math. Meth. Appl. Sci., 37 (2014), 1159. doi: 10.1002/mma.2877. Google Scholar

[12]

A. Kirsch and X. Liu, Direct and inverse acoustic scattering by a mixed-type scatterer,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/6/065005. Google Scholar

[13]

A. Kirsch and X. Liu, A modification of the factorization method for the classical acoustic inverse scattering problems,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/3/035013. Google Scholar

[14]

A. Lechleiter, The factorization method is independent of transmission eigenvalues,, Inverse Problems Imaging, 3 (2009), 123. doi: 10.3934/ipi.2009.3.123. Google Scholar

[15]

X. Liu, The factorization method for cavities,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/1/015006. Google Scholar

[16]

W. Mclean, Strongly Elliptic Systems and Boundary Integral Equation,, Cambridge University Press, (2000). Google Scholar

[17]

D. L. Nguyen, Spectral Methods for Direct and Inverse Scattering from Periodic Structures,, PhD thesis, (2012). Google Scholar

[18]

J. Yang, B. Zhang and H. Zhang, The factorization method for reconstructing a penetrable obstacle with unknown buried objects,, SIAM J. Appl. Math., 73 (2013), 617. doi: 10.1137/120883724. Google Scholar

[1]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[2]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[3]

Giorgio Menegatti, Luca Rondi. Stability for the acoustic scattering problem for sound-hard scatterers. Inverse Problems & Imaging, 2013, 7 (4) : 1307-1329. doi: 10.3934/ipi.2013.7.1307

[4]

Jun Guo, Qinghua Wu, Guozheng Yan. The factorization method for cracks in elastic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 349-371. doi: 10.3934/ipi.2018016

[5]

Fenglong Qu, Jiaqing Yang. On recovery of an inhomogeneous cavity in inverse acoustic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 281-291. doi: 10.3934/ipi.2018012

[6]

Hongyu Liu, Jun Zou. Uniqueness in determining multiple polygonal scatterers of mixed type. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 375-396. doi: 10.3934/dcdsb.2008.9.375

[7]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[8]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems & Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[9]

Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems & Imaging, 2012, 6 (4) : 749-773. doi: 10.3934/ipi.2012.6.749

[10]

Fang Zeng, Xiaodong Liu, Jiguang Sun, Liwei Xu. The reciprocity gap method for a cavity in an inhomogeneous medium. Inverse Problems & Imaging, 2016, 10 (3) : 855-868. doi: 10.3934/ipi.2016024

[11]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[12]

Masaru Ikehata, Mishio Kawashita. On finding a buried obstacle in a layered medium via the time domain enclosure method. Inverse Problems & Imaging, 2018, 12 (5) : 1173-1198. doi: 10.3934/ipi.2018049

[13]

Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems & Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103

[14]

Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems & Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131

[15]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[16]

Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123

[17]

Yi-Hsuan Lin. Reconstruction of penetrable obstacles in the anisotropic acoustic scattering. Inverse Problems & Imaging, 2016, 10 (3) : 765-780. doi: 10.3934/ipi.2016020

[18]

Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks & Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337

[19]

T. J. Christiansen. Resonances and balls in obstacle scattering with Neumann boundary conditions. Inverse Problems & Imaging, 2008, 2 (3) : 335-340. doi: 10.3934/ipi.2008.2.335

[20]

Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems & Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]