April  2015, 8(2): 303-312. doi: 10.3934/dcdss.2015.8.303

Optimization of electromagnetic wave propagation through a liquid crystal layer

1. 

Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943, United States

2. 

Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943-5216

Received  April 2013 Revised  October 2013 Published  July 2014

We study the propagation of electromagnetic plane waves through a liquid crystal layer paying particular attention to the problem of optimizing the transmitted intensity. The controllable anisotropy of a liquid crystal layer, either through anchoring conditions on supporting glass plates sandwiching the layer or by the imposition of an external electromagnetic field, allows us to tune the orientation of the layer to maximize or minimize the transmitted intensity of a given wavelength through the layer. For a homogeneous liquid crystal orientation field, we find analytical formulas for the orientation that maximizes the transmission and discuss the circumstances under which we can make the layer effectively transparent for a given wavelength and the possibility of multiple maximizing orientations. The minimizing orientation is unique for a given wavelength, and we can define its value implicitly.
Citation: Eric P. Choate, Hong Zhou. Optimization of electromagnetic wave propagation through a liquid crystal layer. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 303-312. doi: 10.3934/dcdss.2015.8.303
References:
[1]

I. Abdulhalim, Analytic propagation matrix method for linear optics of arbitrary biaxial layered media,, J. Opt. A: Pure Appl. opt., 1 (1999), 646. doi: 10.1088/1464-4258/1/5/311. Google Scholar

[2]

D. W. Berreman, Optics in stratified and anisotropic media: 4x4 matrix formulation,, J. Opt. Soc. Am., 62 (1972), 502. Google Scholar

[3]

M. Born and E. Wolf, Principles of Optics,, Cambridge University Press, (1999). doi: 10.1017/CBO9781139644181. Google Scholar

[4]

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,, Oxford University Press, (1993). Google Scholar

[5]

J. A. Fleck, Jr and M. D. Feit, Beam propagation in uniaxial anisotropic media,, J. Opt. Soc. Am, 73 (1983), 920. Google Scholar

[6]

D. K. Hwang and A. D. Rey, Computational modeling of the propagation of light through liquid crystals containing twist disclinations based on the finite-difference time-domain (FDTD) method,, Appl. Opt., 44 (2005), 4513. Google Scholar

[7]

D. K. Hwang and A. D. Rey, Computational modeling of light propagation in textured liquid crystals based on the finite-difference time-domain (FDTD) method,, Liquid Crystals, 32 (2005), 483. Google Scholar

[8]

D. K. Hwang, W. H. Han and A. D. Rey, Computational rheooptics of liquid crystal polymers,, J. Non-Newtonian Fluid Mech., 143 (2007), 10. doi: 10.1016/j.jnnfm.2006.11.006. Google Scholar

[9]

E. E. Kriezis and S. J. Elston, Finite-difference time domain method for light wave propagation within liquid crystal devices,, Optics Communications, 165 (1999), 99. doi: 10.1016/S0030-4018(99)00219-9. Google Scholar

[10]

E. E. Kriezis and S. J. Elston, Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,, Optics Communications, 177 (2000), 69. doi: 10.1016/S0030-4018(00)00595-2. Google Scholar

[11]

P. Yeh, Optical Waves in Layered Media,, Wiley, (2005). doi: 10.1063/1.2810419. Google Scholar

[12]

G. D. Ziogos and E. E. Kriezis, Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method,, Opt Quant Electron, 40 (2008), 733. doi: 10.1007/s11082-008-9261-2. Google Scholar

show all references

References:
[1]

I. Abdulhalim, Analytic propagation matrix method for linear optics of arbitrary biaxial layered media,, J. Opt. A: Pure Appl. opt., 1 (1999), 646. doi: 10.1088/1464-4258/1/5/311. Google Scholar

[2]

D. W. Berreman, Optics in stratified and anisotropic media: 4x4 matrix formulation,, J. Opt. Soc. Am., 62 (1972), 502. Google Scholar

[3]

M. Born and E. Wolf, Principles of Optics,, Cambridge University Press, (1999). doi: 10.1017/CBO9781139644181. Google Scholar

[4]

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,, Oxford University Press, (1993). Google Scholar

[5]

J. A. Fleck, Jr and M. D. Feit, Beam propagation in uniaxial anisotropic media,, J. Opt. Soc. Am, 73 (1983), 920. Google Scholar

[6]

D. K. Hwang and A. D. Rey, Computational modeling of the propagation of light through liquid crystals containing twist disclinations based on the finite-difference time-domain (FDTD) method,, Appl. Opt., 44 (2005), 4513. Google Scholar

[7]

D. K. Hwang and A. D. Rey, Computational modeling of light propagation in textured liquid crystals based on the finite-difference time-domain (FDTD) method,, Liquid Crystals, 32 (2005), 483. Google Scholar

[8]

D. K. Hwang, W. H. Han and A. D. Rey, Computational rheooptics of liquid crystal polymers,, J. Non-Newtonian Fluid Mech., 143 (2007), 10. doi: 10.1016/j.jnnfm.2006.11.006. Google Scholar

[9]

E. E. Kriezis and S. J. Elston, Finite-difference time domain method for light wave propagation within liquid crystal devices,, Optics Communications, 165 (1999), 99. doi: 10.1016/S0030-4018(99)00219-9. Google Scholar

[10]

E. E. Kriezis and S. J. Elston, Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,, Optics Communications, 177 (2000), 69. doi: 10.1016/S0030-4018(00)00595-2. Google Scholar

[11]

P. Yeh, Optical Waves in Layered Media,, Wiley, (2005). doi: 10.1063/1.2810419. Google Scholar

[12]

G. D. Ziogos and E. E. Kriezis, Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method,, Opt Quant Electron, 40 (2008), 733. doi: 10.1007/s11082-008-9261-2. Google Scholar

[1]

Chun Liu, Jie Shen. On liquid crystal flows with free-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 307-318. doi: 10.3934/dcds.2001.7.307

[2]

M. Gregory Forest, Hongyun Wang, Hong Zhou. Sheared nematic liquid crystal polymer monolayers. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 497-517. doi: 10.3934/dcdsb.2009.11.497

[3]

Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561

[4]

Domenico Mucci. Maps into projective spaces: Liquid crystal and conformal energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 597-635. doi: 10.3934/dcdsb.2012.17.597

[5]

Zhenlu Cui, M. Carme Calderer, Qi Wang. Mesoscale structures in flows of weakly sheared cholesteric liquid crystal polymers. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 291-310. doi: 10.3934/dcdsb.2006.6.291

[6]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[7]

Shanshan Guo, Zhong Tan. Energy dissipation for weak solutions of incompressible liquid crystal flows. Kinetic & Related Models, 2015, 8 (4) : 691-706. doi: 10.3934/krm.2015.8.691

[8]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[9]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[10]

Patricia Bauman, Daniel Phillips. Analysis and stability of bent-core liquid crystal fibers. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1707-1728. doi: 10.3934/dcdsb.2012.17.1707

[11]

Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078

[12]

Zhenlu Cui, Qi Wang. Permeation flows in cholesteric liquid crystal polymers under oscillatory shear. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 45-60. doi: 10.3934/dcdsb.2011.15.45

[13]

M. Carme Calderer, Carlos A. Garavito Garzón, Baisheng Yan. A Landau--de Gennes theory of liquid crystal elastomers. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 283-302. doi: 10.3934/dcdss.2015.8.283

[14]

Junyu Lin. Uniqueness of harmonic map heat flows and liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 739-755. doi: 10.3934/dcds.2013.33.739

[15]

T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101

[16]

Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231

[17]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[18]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[19]

Zhiyuan Geng, Wei Wang, Pingwen Zhang, Zhifei Zhang. Stability of half-degree point defect profiles for 2-D nematic liquid crystal. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6227-6242. doi: 10.3934/dcds.2017269

[20]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]