February  2015, 8(1): 185-221. doi: 10.3934/dcdss.2015.8.185

Application of Lie transform techniques for simulation of a charged particle beam

1. 

Inria Nancy-Grand Est, CALVI Project, & IRMA (UMR CNRS 7501), Université de Strasbourg, 7, rue René-Descartes, 67084, Strasbourg, France

Received  February 2013 Revised  May 2013 Published  July 2014

We study a Lie Transform method for a charged beam under the action of a radial external electric field. The aim of the Lie transform method that is used here is to construct a change of variable which transforms the 2D kinetic problem into a 1D problem. This reduces the dimensionality of the problem and make it easier to solve numerically. After applying the Lie transform method, we truncate the expression of the characteristics of the Vlasov equation and the expression of the Poisson equation in the Lie coordinate system and we develop a numerical method for solving the truncated model and we study its efficiency for the simulation of long time beam evolution.
Citation: Mathieu Lutz. Application of Lie transform techniques for simulation of a charged particle beam. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 185-221. doi: 10.3934/dcdss.2015.8.185
References:
[1]

J. A. Brizard, Nonlinear gyrokinetic Vlasov equation for toroidally rotating axisymmetric tokamaks,, Physics of Plasmas, 2 (1995), 459. doi: 10.1063/1.871465. Google Scholar

[2]

N. Crouseilles, M. Lemou and F. Méhats, Asymptotic preserving schemes for highly oscillatory kinetic equations,, J. Comp. Phys., 248 (2013), 287. doi: 10.1016/j.jcp.2013.04.022. Google Scholar

[3]

D. H. E. Dubin, J. A. Krommes, C. Oberman and W. W. Lee, Nonlinear gyrokinetic equations,, Physics of Fluids, 26 (1983), 3524. doi: 10.1063/1.864113. Google Scholar

[4]

F. Filbet and E. Sonnendrücker, Modeling and numerical simulation of space charge dominated beams in the paraxial approximation,, Mathematical Models and Methods in Applied Sciences, 16 (2006), 763. doi: 10.1142/S0218202506001340. Google Scholar

[5]

E. Frénod, F. Salvarani and E. Sonnendrücker, Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method,, Mathematical Models and Methods in Applied Sciences, 19 (2009), 175. doi: 10.1142/S0218202509003395. Google Scholar

[6]

E. Frénod and E. Sonnendrücker, The finite larmor radius approximation,, SIAM J. Math. Anal., 32 (2001), 1227. doi: 10.1137/S0036141099364243. Google Scholar

[7]

E. A. Frieman and L. Chen, Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria,, Physics of Fluids, 25 (1982), 502. doi: 10.1063/1.863762. Google Scholar

[8]

T. S. Hahm, Nonlinear gyrokinetic equations for tokamak microturbulence,, Physics of Fluids, 31 (1988), 2670. doi: 10.1063/1.866544. Google Scholar

[9]

T. S. Hahm, W. W. Lee and A. Brizard, Nonlinear gyrokinetic theory for finite-beta plasmas,, Physics of Fluids, 31 (1988), 1940. doi: 10.1063/1.866641. Google Scholar

[10]

R. G. Littlejohn, A guiding center Hamiltonian: A new approach,, Journal of Mathematical Physics, 20 (1979), 2445. doi: 10.1063/1.524053. Google Scholar

[11]

R. G. Littlejohn, Hamiltonian formulation of guiding center motion,, Physics of Fluids, 24 (1981), 1730. doi: 10.1063/1.863594. Google Scholar

[12]

R. G. Littlejohn, Hamiltonian perturbation theory in noncanonical coordinates,, Journal of Mathematical Physics, 23 (1982), 742. doi: 10.1063/1.525429. Google Scholar

[13]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems,, Springer, (1999). doi: 10.1007/978-0-387-21792-5. Google Scholar

[14]

K. R. Meyer and G. R. Hall, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Applied Mathematical Sciences, 90,, Springer-Verlag, (1992). doi: 10.1007/978-1-4757-4073-8. Google Scholar

[15]

P. J. Olver, Applications of Lie Groups to Differential Equations,, Second edition, (1993). doi: 10.1007/978-1-4612-4350-2. Google Scholar

[16]

F. I. Parra and P. J. Catto, Limitations of gyrokinetics on transport time scales,, Plasma Physics and Controlled Fusion, 50 (2008). doi: 10.1088/0741-3335/50/6/065014. Google Scholar

[17]

F. I. Parra and P. J. Catto, Gyrokinetic equivalence,, Plasma Physics and Controlled Fusion, 51 (2009). doi: 10.1088/0741-3335/51/6/065002. Google Scholar

[18]

F. I. Parra and P. J. Catto, Turbulent transport of toroidal angular momentum in low flow gyrokinetics,, Plasma Physics and Controlled Fusion, 52 (2010). doi: 10.1088/0741-3335/52/4/045004. Google Scholar

[19]

H. Qin, R. H. Cohen, W. M. Nevins and X. Q. Xu, General gyrokinetic equations for edge plasmas,, Contributions to Plasma Physics, 46 (2006), 477. doi: 10.1002/ctpp.200610034. Google Scholar

show all references

References:
[1]

J. A. Brizard, Nonlinear gyrokinetic Vlasov equation for toroidally rotating axisymmetric tokamaks,, Physics of Plasmas, 2 (1995), 459. doi: 10.1063/1.871465. Google Scholar

[2]

N. Crouseilles, M. Lemou and F. Méhats, Asymptotic preserving schemes for highly oscillatory kinetic equations,, J. Comp. Phys., 248 (2013), 287. doi: 10.1016/j.jcp.2013.04.022. Google Scholar

[3]

D. H. E. Dubin, J. A. Krommes, C. Oberman and W. W. Lee, Nonlinear gyrokinetic equations,, Physics of Fluids, 26 (1983), 3524. doi: 10.1063/1.864113. Google Scholar

[4]

F. Filbet and E. Sonnendrücker, Modeling and numerical simulation of space charge dominated beams in the paraxial approximation,, Mathematical Models and Methods in Applied Sciences, 16 (2006), 763. doi: 10.1142/S0218202506001340. Google Scholar

[5]

E. Frénod, F. Salvarani and E. Sonnendrücker, Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method,, Mathematical Models and Methods in Applied Sciences, 19 (2009), 175. doi: 10.1142/S0218202509003395. Google Scholar

[6]

E. Frénod and E. Sonnendrücker, The finite larmor radius approximation,, SIAM J. Math. Anal., 32 (2001), 1227. doi: 10.1137/S0036141099364243. Google Scholar

[7]

E. A. Frieman and L. Chen, Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria,, Physics of Fluids, 25 (1982), 502. doi: 10.1063/1.863762. Google Scholar

[8]

T. S. Hahm, Nonlinear gyrokinetic equations for tokamak microturbulence,, Physics of Fluids, 31 (1988), 2670. doi: 10.1063/1.866544. Google Scholar

[9]

T. S. Hahm, W. W. Lee and A. Brizard, Nonlinear gyrokinetic theory for finite-beta plasmas,, Physics of Fluids, 31 (1988), 1940. doi: 10.1063/1.866641. Google Scholar

[10]

R. G. Littlejohn, A guiding center Hamiltonian: A new approach,, Journal of Mathematical Physics, 20 (1979), 2445. doi: 10.1063/1.524053. Google Scholar

[11]

R. G. Littlejohn, Hamiltonian formulation of guiding center motion,, Physics of Fluids, 24 (1981), 1730. doi: 10.1063/1.863594. Google Scholar

[12]

R. G. Littlejohn, Hamiltonian perturbation theory in noncanonical coordinates,, Journal of Mathematical Physics, 23 (1982), 742. doi: 10.1063/1.525429. Google Scholar

[13]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems,, Springer, (1999). doi: 10.1007/978-0-387-21792-5. Google Scholar

[14]

K. R. Meyer and G. R. Hall, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Applied Mathematical Sciences, 90,, Springer-Verlag, (1992). doi: 10.1007/978-1-4757-4073-8. Google Scholar

[15]

P. J. Olver, Applications of Lie Groups to Differential Equations,, Second edition, (1993). doi: 10.1007/978-1-4612-4350-2. Google Scholar

[16]

F. I. Parra and P. J. Catto, Limitations of gyrokinetics on transport time scales,, Plasma Physics and Controlled Fusion, 50 (2008). doi: 10.1088/0741-3335/50/6/065014. Google Scholar

[17]

F. I. Parra and P. J. Catto, Gyrokinetic equivalence,, Plasma Physics and Controlled Fusion, 51 (2009). doi: 10.1088/0741-3335/51/6/065002. Google Scholar

[18]

F. I. Parra and P. J. Catto, Turbulent transport of toroidal angular momentum in low flow gyrokinetics,, Plasma Physics and Controlled Fusion, 52 (2010). doi: 10.1088/0741-3335/52/4/045004. Google Scholar

[19]

H. Qin, R. H. Cohen, W. M. Nevins and X. Q. Xu, General gyrokinetic equations for edge plasmas,, Contributions to Plasma Physics, 46 (2006), 477. doi: 10.1002/ctpp.200610034. Google Scholar

[1]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[2]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic & Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[3]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[4]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[5]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic & Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[6]

Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic & Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039

[7]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic & Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[8]

Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039

[9]

David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353

[10]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

[11]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

[12]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks & Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

[13]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[14]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic & Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[15]

C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems & Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457

[16]

Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic & Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621

[17]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic & Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[18]

Dongming Wei. 1D Vlasov-Poisson equations with electron sheet initial data. Kinetic & Related Models, 2010, 3 (4) : 729-754. doi: 10.3934/krm.2010.3.729

[19]

Pierre Degond, Simone Goettlich, Axel Klar, Mohammed Seaid, Andreas Unterreiter. Derivation of a kinetic model from a stochastic particle system. Kinetic & Related Models, 2008, 1 (4) : 557-572. doi: 10.3934/krm.2008.1.557

[20]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]