# American Institute of Mathematical Sciences

August  2014, 7(4): 823-838. doi: 10.3934/dcdss.2014.7.823

## Hopf fibration and singularly perturbed elliptic equations

 1 Dip. di Matematica, Universita degli Studi, Via Saldini 50, 20133 Milano 2 T.I.F.R. CAM, Bangalore, 560065, India

Received  November 2013 Revised  December 2013 Published  February 2014

In this article we show how the Hopf fibration can be used to generate special solutions of singularly perturbed elliptic equations on annuli. Indeed, by the Hopf fibration the equation can be reduced to a lower dimensional problem, to which known results on single (or multiple point) concentration can be applied. Reversing the reduction process, one obtains solutions concentrating on circles and spheres, which are given as the fibres of the Hopf fibration.
Citation: Bernhard Ruf, P. N. Srikanth. Hopf fibration and singularly perturbed elliptic equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 823-838. doi: 10.3934/dcdss.2014.7.823
##### References:
 [1] A. Ambrosetti, A. Malchiodi and W.-M. Ni, Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres. II,, Indiana Univ. Math. J., 53 (2004), 297. doi: 10.1512/iumj.2004.53.2400. Google Scholar [2] M. Badiale and T. d'Aprile, Concentration around a sphere for a singularly perturbed Schrödinger equation,, Nonlinear Anal. Ser. A: Theory Methods, 49 (2002), 947. doi: 10.1016/S0362-546X(01)00717-9. Google Scholar [3] V. Benci and T. d'Aprile, The semiclassical limit of the nonlinear Schrödinger equation in a radial potential,, J. Differential Equations, 184 (2002), 109. doi: 10.1006/jdeq.2001.4138. Google Scholar [4] A. Besse, Einstein Manifolds,, Springer, (1987). Google Scholar [5] J. Byeon and J. Park, Singularly perturbed nonlinaer elliptic problems on manifolds,, Calculus of Variations, 24 (2005), 459. doi: 10.1007/s00526-005-0339-4. Google Scholar [6] D. Cao and E. S. Noussair, Existance of symmetri multi-peaked solutions to singularly perturbed semilinear elliptic problems,, Comm. PDE, 25 (2000), 2185. doi: 10.1080/03605300008821582. Google Scholar [7] M. Clapp, M. Ghimenti and A. M. Micheletti, Solutions to a singularly perturbed supercritical elliptic equation on a Riemannian manifold concentrating at a submanifold,, preprint, (). Google Scholar [8] M. del Pino and P. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting,, Indiana Univ. Math. J., 48 (1999), 883. doi: 10.1512/iumj.1999.48.1596. Google Scholar [9] M. del Pino, M. Kowalczyk, Michal and J. Wei, Concentration on curves for nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 60 (2007), 113. doi: 10.1002/cpa.20135. Google Scholar [10] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, J. Funct. Anal., 69 (1986), 397. doi: 10.1016/0022-1236(86)90096-0. Google Scholar [11] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125. Google Scholar [12] S. Ishihara, Quaternion Kählerian manifolds,, J. Diff. Geometry, 9 (1974), 483. Google Scholar [13] , N. Johnson,, , (). Google Scholar [14] , S. Karigiannis,, , (). Google Scholar [15] C. S. Lin, W.-M. Ni and I. Takagi, Large amplituted stationary soutions to a chemotaxis system,, J. Diff. Equ., 72 (1988), 1. doi: 10.1016/0022-0396(88)90147-7. Google Scholar [16] A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains,, Geometric and Functional Analysis GAFA, 15 (2005), 1162. doi: 10.1007/s00039-005-0542-7. Google Scholar [17] A. Malchiodi and M. Montenegro, Boundary layers of arbitrary dimension for a singularly perturbed Neumann problem,, Mat. Contemp., 27 (2004), 117. Google Scholar [18] A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem,, Duke Math. J., 124 (2004), 105. doi: 10.1215/S0012-7094-04-12414-5. Google Scholar [19] B. B. Manna and P. N. Srikanth, On the solutions of a singular elliptic equation concentrating on two orthogonal spheres,, preprint., (). Google Scholar [20] W.-M. Ni and I. Takagi, On the shape of least energy solutions to a semilinear Neumann problem,, Comm. Pure Appl. Math., 44 (1991), 819. doi: 10.1002/cpa.3160440705. Google Scholar [21] W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems,, Comm. Pure Appl. Math., 68 (1995), 731. doi: 10.1002/cpa.3160480704. Google Scholar [22] Y-G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_a$ ,, Comm. Partial Differential Equations, 13 (1988), 1499. doi: 10.1080/03605308808820585. Google Scholar [23] B. O'Neill, Semi-Riemannian Geometry,, Academic Press, (1983). Google Scholar [24] F. Pacella and P. N. Srikanth, A reduction method for semilinear elliptic equations and solutions concentrating on spheres,, to appear., (). Google Scholar [25] B. Ruf and P. N. Srikanth, Singularly pertubed elliptic equations with solutions concentrating on a $1$-dimensional orbit,, JEMS, 12 (2010), 413. doi: 10.4171/JEMS/203. Google Scholar [26] B. Ruf and P. N. Srikanth, Concentration on Hopf-Fibres for singularly perturbed elliptic equations,, preprint., (). Google Scholar [27] J. C. Wood, Harmonic morphisms between Riemannian manifolds,, in Modern Trends in Geometry and Topology, (2006), 397. Google Scholar

show all references

##### References:
 [1] A. Ambrosetti, A. Malchiodi and W.-M. Ni, Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres. II,, Indiana Univ. Math. J., 53 (2004), 297. doi: 10.1512/iumj.2004.53.2400. Google Scholar [2] M. Badiale and T. d'Aprile, Concentration around a sphere for a singularly perturbed Schrödinger equation,, Nonlinear Anal. Ser. A: Theory Methods, 49 (2002), 947. doi: 10.1016/S0362-546X(01)00717-9. Google Scholar [3] V. Benci and T. d'Aprile, The semiclassical limit of the nonlinear Schrödinger equation in a radial potential,, J. Differential Equations, 184 (2002), 109. doi: 10.1006/jdeq.2001.4138. Google Scholar [4] A. Besse, Einstein Manifolds,, Springer, (1987). Google Scholar [5] J. Byeon and J. Park, Singularly perturbed nonlinaer elliptic problems on manifolds,, Calculus of Variations, 24 (2005), 459. doi: 10.1007/s00526-005-0339-4. Google Scholar [6] D. Cao and E. S. Noussair, Existance of symmetri multi-peaked solutions to singularly perturbed semilinear elliptic problems,, Comm. PDE, 25 (2000), 2185. doi: 10.1080/03605300008821582. Google Scholar [7] M. Clapp, M. Ghimenti and A. M. Micheletti, Solutions to a singularly perturbed supercritical elliptic equation on a Riemannian manifold concentrating at a submanifold,, preprint, (). Google Scholar [8] M. del Pino and P. Felmer, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting,, Indiana Univ. Math. J., 48 (1999), 883. doi: 10.1512/iumj.1999.48.1596. Google Scholar [9] M. del Pino, M. Kowalczyk, Michal and J. Wei, Concentration on curves for nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 60 (2007), 113. doi: 10.1002/cpa.20135. Google Scholar [10] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, J. Funct. Anal., 69 (1986), 397. doi: 10.1016/0022-1236(86)90096-0. Google Scholar [11] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125. Google Scholar [12] S. Ishihara, Quaternion Kählerian manifolds,, J. Diff. Geometry, 9 (1974), 483. Google Scholar [13] , N. Johnson,, , (). Google Scholar [14] , S. Karigiannis,, , (). Google Scholar [15] C. S. Lin, W.-M. Ni and I. Takagi, Large amplituted stationary soutions to a chemotaxis system,, J. Diff. Equ., 72 (1988), 1. doi: 10.1016/0022-0396(88)90147-7. Google Scholar [16] A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains,, Geometric and Functional Analysis GAFA, 15 (2005), 1162. doi: 10.1007/s00039-005-0542-7. Google Scholar [17] A. Malchiodi and M. Montenegro, Boundary layers of arbitrary dimension for a singularly perturbed Neumann problem,, Mat. Contemp., 27 (2004), 117. Google Scholar [18] A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem,, Duke Math. J., 124 (2004), 105. doi: 10.1215/S0012-7094-04-12414-5. Google Scholar [19] B. B. Manna and P. N. Srikanth, On the solutions of a singular elliptic equation concentrating on two orthogonal spheres,, preprint., (). Google Scholar [20] W.-M. Ni and I. Takagi, On the shape of least energy solutions to a semilinear Neumann problem,, Comm. Pure Appl. Math., 44 (1991), 819. doi: 10.1002/cpa.3160440705. Google Scholar [21] W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems,, Comm. Pure Appl. Math., 68 (1995), 731. doi: 10.1002/cpa.3160480704. Google Scholar [22] Y-G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_a$ ,, Comm. Partial Differential Equations, 13 (1988), 1499. doi: 10.1080/03605308808820585. Google Scholar [23] B. O'Neill, Semi-Riemannian Geometry,, Academic Press, (1983). Google Scholar [24] F. Pacella and P. N. Srikanth, A reduction method for semilinear elliptic equations and solutions concentrating on spheres,, to appear., (). Google Scholar [25] B. Ruf and P. N. Srikanth, Singularly pertubed elliptic equations with solutions concentrating on a $1$-dimensional orbit,, JEMS, 12 (2010), 413. doi: 10.4171/JEMS/203. Google Scholar [26] B. Ruf and P. N. Srikanth, Concentration on Hopf-Fibres for singularly perturbed elliptic equations,, preprint., (). Google Scholar [27] J. C. Wood, Harmonic morphisms between Riemannian manifolds,, in Modern Trends in Geometry and Topology, (2006), 397. Google Scholar
 [1] Wenxiong Chen, Congming Li, Biao Ou. Qualitative properties of solutions for an integral equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 347-354. doi: 10.3934/dcds.2005.12.347 [2] Xavier Cabré. Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 331-359. doi: 10.3934/dcds.2002.8.331 [3] Susana Merchán, Luigi Montoro, I. Peral. Optimal reaction exponent for some qualitative properties of solutions to the $p$-heat equation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 245-268. doi: 10.3934/cpaa.2015.14.245 [4] Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i [5] Linfeng Mei, Wei Dong, Changhe Guo. Concentration phenomenon in a nonlocal equation modeling phytoplankton growth. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 587-597. doi: 10.3934/dcdsb.2015.20.587 [6] Alfonso Castro, Jorge Cossio, Carlos Vélez. Existence and qualitative properties of solutions for nonlinear Dirichlet problems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 123-140. doi: 10.3934/dcds.2013.33.123 [7] Rumei Zhang, Jin Chen, Fukun Zhao. Multiple solutions for superlinear elliptic systems of Hamiltonian type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1249-1262. doi: 10.3934/dcds.2011.30.1249 [8] Jian Zhang, Wen Zhang, Xiaoliang Xie. Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2016, 15 (2) : 599-622. doi: 10.3934/cpaa.2016.15.599 [9] Sergey A. Denisov. Infinite superlinear growth of the gradient for the two-dimensional Euler equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 755-764. doi: 10.3934/dcds.2009.23.755 [10] Claudianor Oliveira Alves, M. A.S. Souto. On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Communications on Pure & Applied Analysis, 2002, 1 (3) : 417-431. doi: 10.3934/cpaa.2002.1.417 [11] Lu Chen, Zhao Liu, Guozhen Lu. Qualitative properties of solutions to an integral system associated with the Bessel potential. Communications on Pure & Applied Analysis, 2016, 15 (3) : 893-906. doi: 10.3934/cpaa.2016.15.893 [12] Alina Gleska, Małgorzata Migda. Qualitative properties of solutions of higher order difference equations with deviating arguments. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 239-252. doi: 10.3934/dcdsb.2018016 [13] Armen Shirikyan, Leonid Volevich. Qualitative properties of solutions for linear and nonlinear hyperbolic PDE's. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 517-542. doi: 10.3934/dcds.2004.10.517 [14] Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015 [15] Alessandro Selvitella. Qualitative properties of stationary solutions of the NLS on the Hyperbolic space without and with external potentials. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2663-2677. doi: 10.3934/cpaa.2019118 [16] Yi-hsin Cheng, Tsung-Fang Wu. Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2457-2473. doi: 10.3934/cpaa.2016044 [17] Song Peng, Aliang Xia. Multiplicity and concentration of solutions for nonlinear fractional elliptic equations with steep potential. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1201-1217. doi: 10.3934/cpaa.2018058 [18] Soohyun Bae. Positive entire solutions of inhomogeneous semilinear elliptic equations with supercritical exponent. Conference Publications, 2005, 2005 (Special) : 50-59. doi: 10.3934/proc.2005.2005.50 [19] Liping Wang. Arbitrarily many solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (3) : 761-778. doi: 10.3934/cpaa.2010.9.761 [20] Yuxin Ge, Ruihua Jing, Feng Zhou. Bubble tower solutions of slightly supercritical elliptic equations and application in symmetric domains. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 751-770. doi: 10.3934/dcds.2007.17.751

2018 Impact Factor: 0.545