# American Institute of Mathematical Sciences

August  2014, 7(4): 793-805. doi: 10.3934/dcdss.2014.7.793

## Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus

 1 Dipartimento di Matematica, Università di Roma Sapienza, P.le A. Moro 2, 00185 Roma, Italy 2 Centro de Modelamiento Matemático, UMI 2807 CNRS-UChile, Universidad de Chile, Blanco Encalada 2120, Piso 7, Santiago, Chile

Received  July 2013 Revised  October 2013 Published  February 2014

We study the asymptotic behaviour as $p\rightarrow \infty$ of the nodal radial solutions $u_p$ of the problem \begin{equation*} \left\{ \begin{array}{rlll} -\Delta u&=&|u|^{p-1}u& \text{in }\Omega \\ u&=&0& \text{on }\partial\Omega, \end{array} \right. \end{equation*} where $\Omega$ is an annulus in $\mathbb{R}^N$, $N\geq 2$. We also analyze the spectrum of the linearized operator associated to $u_p$ in the case when $u_p$ has only two nodal regions. In particular, we prove that the Morse index of $u_p$ tends to $\infty$ as $p$ goes to $\infty$.
Citation: Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793
##### References:
 [1] Adimurthi and M. Grossi, Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity,, Proc. Amer. Math. Soc., 132 (2004), 1013. doi: 10.1090/S0002-9939-03-07301-5. Google Scholar [2] T. Bartsch, M. Clapp, M. Grossi and F. Pacella, Asymptotically radial solutions in expanding annular domains,, Math. Ann., 352 (2012), 485. doi: 10.1007/s00208-011-0646-3. Google Scholar [3] T. Bartsch and T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations,, Topol. Methods Nonlinear Anal., 22 (2003), 1. Google Scholar [4] F. Dickstein, F. Pacella and B. Scunzi, Sign-changing stationary solutions and blowup for the nonlinear heat equation in dimension two, preprint,, , (). Google Scholar [5] F. Gladiali, M. Grossi, F. Pacella and P. N. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus,, Calc. Var. Partial Differential Equations, 40 (2011), 295. doi: 10.1007/s00526-010-0341-3. Google Scholar [6] M. Grossi, Asymptotic behaviour of the Kazdan-Warner solution in the annulus,, J. Differential Equations, 223 (2006), 96. doi: 10.1016/j.jde.2005.08.003. Google Scholar [7] M. Grossi, C. Grumiau and F. Pacella, Lane Emden problems with large exponents and singular Liouville equations,, to appear in J. Math. Pures Appl., (). Google Scholar [8] W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u,r)=0$,, Comm. Pure Appl. Math., 38 (1985), 67. doi: 10.1002/cpa.3160380105. Google Scholar

show all references

##### References:
 [1] Adimurthi and M. Grossi, Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity,, Proc. Amer. Math. Soc., 132 (2004), 1013. doi: 10.1090/S0002-9939-03-07301-5. Google Scholar [2] T. Bartsch, M. Clapp, M. Grossi and F. Pacella, Asymptotically radial solutions in expanding annular domains,, Math. Ann., 352 (2012), 485. doi: 10.1007/s00208-011-0646-3. Google Scholar [3] T. Bartsch and T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations,, Topol. Methods Nonlinear Anal., 22 (2003), 1. Google Scholar [4] F. Dickstein, F. Pacella and B. Scunzi, Sign-changing stationary solutions and blowup for the nonlinear heat equation in dimension two, preprint,, , (). Google Scholar [5] F. Gladiali, M. Grossi, F. Pacella and P. N. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus,, Calc. Var. Partial Differential Equations, 40 (2011), 295. doi: 10.1007/s00526-010-0341-3. Google Scholar [6] M. Grossi, Asymptotic behaviour of the Kazdan-Warner solution in the annulus,, J. Differential Equations, 223 (2006), 96. doi: 10.1016/j.jde.2005.08.003. Google Scholar [7] M. Grossi, C. Grumiau and F. Pacella, Lane Emden problems with large exponents and singular Liouville equations,, to appear in J. Math. Pures Appl., (). Google Scholar [8] W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u,r)=0$,, Comm. Pure Appl. Math., 38 (1985), 67. doi: 10.1002/cpa.3160380105. Google Scholar
 [1] Salomón Alarcón, Jinggang Tan. Sign-changing solutions for some nonhomogeneous nonlocal critical elliptic problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5825-5846. doi: 10.3934/dcds.2019256 [2] Chia-Yu Hsieh. Stability of radial solutions of the Poisson-Nernst-Planck system in annular domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2657-2681. doi: 10.3934/dcdsb.2018269 [3] M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411 [4] Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713 [5] Riccardo Molle, Donato Passaseo. On the behaviour of the solutions for a class of nonlinear elliptic problems in exterior domains. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 445-454. doi: 10.3934/dcds.1998.4.445 [6] Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439 [7] Gabriele Cora, Alessandro Iacopetti. Sign-changing bubble-tower solutions to fractional semilinear elliptic problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6149-6173. doi: 10.3934/dcds.2019268 [8] Monica Musso, A. Pistoia. Sign changing solutions to a Bahri-Coron's problem in pierced domains. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 295-306. doi: 10.3934/dcds.2008.21.295 [9] Maria Rosaria Lancia, Paola Vernole. The Stokes problem in fractal domains: Asymptotic behaviour of the solutions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-13. doi: 10.3934/dcdss.2020088 [10] Yohei Sato, Zhi-Qiang Wang. On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2151-2164. doi: 10.3934/dcds.2015.35.2151 [11] Aixia Qian, Shujie Li. Multiple sign-changing solutions of an elliptic eigenvalue problem. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 737-746. doi: 10.3934/dcds.2005.12.737 [12] Yuxin Ge, Monica Musso, A. Pistoia, Daniel Pollack. A refined result on sign changing solutions for a critical elliptic problem. Communications on Pure & Applied Analysis, 2013, 12 (1) : 125-155. doi: 10.3934/cpaa.2013.12.125 [13] A. El Hamidi. Multiple solutions with changing sign energy to a nonlinear elliptic equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 253-265. doi: 10.3934/cpaa.2004.3.253 [14] Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084 [15] Norimichi Hirano, A. M. Micheletti, A. Pistoia. Existence of sign changing solutions for some critical problems on $\mathbb R^N$. Communications on Pure & Applied Analysis, 2005, 4 (1) : 143-164. doi: 10.3934/cpaa.2005.4.143 [16] Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489 [17] Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436 [18] Sara Barile, Addolorata Salvatore. Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Conference Publications, 2013, 2013 (special) : 41-49. doi: 10.3934/proc.2013.2013.41 [19] João Marcos do Ó, Sebastián Lorca, Justino Sánchez, Pedro Ubilla. Positive radial solutions for some quasilinear elliptic systems in exterior domains. Communications on Pure & Applied Analysis, 2006, 5 (3) : 571-581. doi: 10.3934/cpaa.2006.5.571 [20] Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883

2018 Impact Factor: 0.545