October  2014, 7(5): i-ii. doi: 10.3934/dcdss.2014.7.5i

New developments in mathematical theory of fluid mechanics

1. 

Institute of Mathematics AVČR, Zitná, 115 67 Praha 1

2. 

Institute of Mathematics AVČR, Žitná, 115 67 Praha 1, Czech Republic

3. 

Institute of Mathematics, University of Paderborn, Warburger Straße 100, D33095 Paderborn

4. 

Institute of Mathematics University of Kassel, Heinrich-Plett-Straße 40, D34109 Kassel, Germany

Published  May 2014

Mathematical theory of fluid mechanics is a field with a rich long history and active present. The volume collects selected contributions of distinguished experts in various domains ranging from modeling through mathematical analysis to numerics and practical implementations related to real world problems.

For more information please click the “Full Text” above.
Citation: Eduard Feireisl, Šárka Nečasová, Reimund Rautmann, Werner Varnhorn. New developments in mathematical theory of fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : i-ii. doi: 10.3934/dcdss.2014.7.5i
[1]

Weinan E, Jianfeng Lu. Mathematical theory of solids: From quantum mechanics to continuum models. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5085-5097. doi: 10.3934/dcds.2014.34.5085

[2]

Yangjin Kim, Avner Friedman, Eugene Kashdan, Urszula Ledzewicz, Chae-Ok Yun. Application of ecological and mathematical theory to cancer: New challenges. Mathematical Biosciences & Engineering, 2015, 12 (6) : i-iv. doi: 10.3934/mbe.2015.12.6i

[3]

François Gay-Balmaz, Darryl D. Holm. Predicting uncertainty in geometric fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-14. doi: 10.3934/dcdss.2020071

[4]

Stéphane Heuraux, Filipe da Silva. Simulations on wave propagation in fluctuating fusion plasmas for Reflectometry applications and new developments. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 307-328. doi: 10.3934/dcdss.2012.5.307

[5]

Alain Miranville, Mazen Saad, Raafat Talhouk. Preface: Workshop in fluid mechanics and population dynamics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : i-i. doi: 10.3934/dcdss.2014.7.2i

[6]

Eliot Fried. New insights into the classical mechanics of particle systems. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1469-1504. doi: 10.3934/dcds.2010.28.1469

[7]

Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317

[8]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[9]

Liang Zhao. New developments in using stochastic recipe for multi-compartment model: Inter-compartment traveling route, residence time, and exponential convolution expansion. Mathematical Biosciences & Engineering, 2009, 6 (3) : 663-682. doi: 10.3934/mbe.2009.6.663

[10]

Richard S. Laugesen. New dissipated energies for the thin fluid film equation. Communications on Pure & Applied Analysis, 2005, 4 (3) : 613-634. doi: 10.3934/cpaa.2005.4.613

[11]

Anatoli Babin, Alexander Figotin. Some mathematical problems in a neoclassical theory of electric charges. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1283-1326. doi: 10.3934/dcds.2010.27.1283

[12]

Eduard Feireisl. Mathematical theory of viscous fluids: Retrospective and future perspectives. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 533-555. doi: 10.3934/dcds.2010.27.533

[13]

Claude Bardos, Nicolas Besse. The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits. Kinetic & Related Models, 2013, 6 (4) : 893-917. doi: 10.3934/krm.2013.6.893

[14]

Abdon Atangana, Sonal Jain. Models of fluid flowing in non-conventional media: New numerical analysis. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 467-484. doi: 10.3934/dcdss.2020026

[15]

Weizhu Bao, Yongyong Cai. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinetic & Related Models, 2013, 6 (1) : 1-135. doi: 10.3934/krm.2013.6.1

[16]

G. Leugering, Marina Prechtel, Paul Steinmann, Michael Stingl. A cohesive crack propagation model: Mathematical theory and numerical solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1705-1729. doi: 10.3934/cpaa.2013.12.1705

[17]

Kung-Ching Chang, Zhi-Qiang Wang, Tan Zhang. On a new index theory and non semi-trivial solutions for elliptic systems. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 809-826. doi: 10.3934/dcds.2010.28.809

[18]

Carlos Castillo-Chavez, Bingtuan Li, Haiyan Wang. Some recent developments on linear determinacy. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1419-1436. doi: 10.3934/mbe.2013.10.1419

[19]

Jean-Marie Souriau. On Geometric Mechanics. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595

[20]

Chjan C. Lim. Extremal free energy in a simple mean field theory for a coupled Barotropic fluid - rotating sphere system. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 361-386. doi: 10.3934/dcds.2007.19.361

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

[Back to Top]