• Previous Article
    Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion
  • DCDS-S Home
  • This Issue
  • Next Article
    Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients
February  2014, 7(1): 161-176. doi: 10.3934/dcdss.2014.7.161

Brownian point vortices and dd-model

1. 

Division of Mathematical Science, Department of System Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikane-yama, Toyonaka, Osaka, 560-8531

Received  January 2012 Revised  August 2012 Published  July 2013

We study the kinetic mean field equation on two-dimensional Brownian vortices; derivation, similarity to the DD-model, and existence and non-existence of global-in-time solution.
Citation: Takashi Suzuki. Brownian point vortices and dd-model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 161-176. doi: 10.3934/dcdss.2014.7.161
References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827. doi: 10.1080/03605307908820113. Google Scholar

[2]

F. Bavaud, Equilibrium properties of the Vlasov functional: The generalized Poisson-Boltzmann-Emden equation,, Rev. Modern Physics, 63 (1991), 129. doi: 10.1103/RevModPhys.63.129. Google Scholar

[3]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 715. Google Scholar

[4]

P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions,, Nonlinear Analysis, 23 (1994), 1189. doi: 10.1016/0362-546X(94)90101-5. Google Scholar

[5]

E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description,, Comm. Math. Phys., 143 (1992), 501. doi: 10.1007/BF02099262. Google Scholar

[6]

P.-H. Chavanis, Kinetic theory of $2D$ point vortices from a BBGKY-like hiearchy,, Physica A, 387 (2008), 1123. doi: 10.1016/j.physa.2007.10.022. Google Scholar

[7]

P.-H. Chavanis, Two-dimensional Brownian vortices,, Physica A, 387 (2008), 6917. doi: 10.1016/j.physa.2008.09.019. Google Scholar

[8]

C. Conca and E. Espejo, Threshold condition for global existence and blow-up to a radially symmetric drift-diffusion system,, Applied Mathematics Letters, 25 (2012), 352. doi: 10.1016/j.aml.2011.09.013. Google Scholar

[9]

C. Conca, E. Espejo and K. Vilches, Remarks on the blow-up and global existence for a two-species chemotactic Keller-Segel system in $R^2$,, Euro. J. Appl. Math., 22 (2011), 553. doi: 10.1017/S0956792511000258. Google Scholar

[10]

E. E. Espejo, M. Kurokiba and T. Suzuki, Blowup threshold and collapse mass separation for a drift-diffusion system in dimension two,, preprint., (). Google Scholar

[11]

E. E. Espejo, A. Stevens and T. Suzuki, Simultaneous blowup and mass separation during collapse in an interacting system of chemotactic species,, Differential and Integral Equations, 25 (2012), 251. Google Scholar

[12]

E. E. Espejo, A. Stevens and J. J. L. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis,, Analysis, 29 (2009), 317. doi: 10.1524/anly.2009.1029. Google Scholar

[13]

E. E. Espejo, A. Stevens and J. J. L. Velázquez, A note on non-simultaneous blow-up for a drift-diffusion model,, Differential and Integral Equations, 23 (2010), 451. Google Scholar

[14]

G. L. Eyink and H. Spohn, Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence,, J. Statistical Physics, 70 (1993), 833. doi: 10.1007/BF01053597. Google Scholar

[15]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis,, Math. Nachr., 195 (1998), 77. doi: 10.1002/mana.19981950106. Google Scholar

[16]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. doi: 10.2307/2153966. Google Scholar

[17]

G. Joyce and D. Montgomery, Negative temperature states for two-dimensional guiding-centre plasma,, J. Plasma Phys., 10 (1973), 107. Google Scholar

[18]

M. K. H. Kiessling, Statistical mechanics of classical particles with logarithmic interaction,, Comm. Pure Appl. Math., 46 (1993), 27. doi: 10.1002/cpa.3160460103. Google Scholar

[19]

M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type,, Differential and Integral Equations, 16 (2003), 427. Google Scholar

[20]

M. Kurokiba and T. Ogawa, Wellposedness of the drit-diffusion system in $L^p$ arising from the semiconductor device simulation,, J. Math. Anal. Appl., 342 (2008), 1052. doi: 10.1016/j.jmaa.2007.11.017. Google Scholar

[21]

M. Kurokiba, T. Nagai and T. Ogawa, The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system,, Comm. Pure Appl. Anal., 5 (2006), 97. Google Scholar

[22]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkcial. Ekvac., 40 (1997), 411. Google Scholar

[23]

K. Nagasaki and T. Suzuki, Asymptotic analysis for two-dimensional elliptic eivgnvalue problem with exponentially dominated nonlinearities,, Asymptoitc Analysis, 3 (1990), 173. Google Scholar

[24]

P. K. Newton, "The $N$-Vortex Problem: Analytical Techniques,", Applied Mathematical Sciences, 145 (2001). doi: 10.1007/978-1-4684-9290-3. Google Scholar

[25]

L. Onsager, Statistical hydrodynamics,, Suppl. Nuovo Cimento, 6 (1949), 279. doi: 10.1007/BF02780991. Google Scholar

[26]

T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology,, Adv. Differential Equations, 6 (2001), 21. Google Scholar

[27]

T. Senba and T. Suzuki, Parabolic system of chemotaxis; blowup in a finite and in the infinite time,, Meth. Appl. Anal., 8 (2001), 349. Google Scholar

[28]

I. Shafrir and G. Wolansky, Moser-Trudinger and logarithmic HLS inequalities for systems,, J. Euro. Math. Soc., 7 (2005), 413. doi: 10.4171/JEMS/34. Google Scholar

[29]

T. Suzuki, Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity,, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 9 (1992), 367. Google Scholar

[30]

T. Suzuki, "Free Energy and Self-Interacting Particles,'', Progress in Nonlinear Differential Equations and their Applications, 62 (2005). doi: 10.1007/0-8176-4436-9. Google Scholar

[31]

T. Suzuki, "Mean Field Theories and Dual Variation,'', Atlantis Studies in Mathematics for Engineering and Science, 2 (2008). Google Scholar

[32]

T. Suzuki and T. Senba, "Applied Analysis, Mathematical Methods in Natural Science,'', Second edition, (2011). Google Scholar

[33]

T. Suzuki, Exclusion of boundary blowup for $2D$ chemotaxis system provided with Dirichlet condition for the Poisson part,, preprint., (). doi: 10.1016/j.matpur.2013.01.004. Google Scholar

show all references

References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827. doi: 10.1080/03605307908820113. Google Scholar

[2]

F. Bavaud, Equilibrium properties of the Vlasov functional: The generalized Poisson-Boltzmann-Emden equation,, Rev. Modern Physics, 63 (1991), 129. doi: 10.1103/RevModPhys.63.129. Google Scholar

[3]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis,, Adv. Math. Sci. Appl., 8 (1998), 715. Google Scholar

[4]

P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions,, Nonlinear Analysis, 23 (1994), 1189. doi: 10.1016/0362-546X(94)90101-5. Google Scholar

[5]

E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description,, Comm. Math. Phys., 143 (1992), 501. doi: 10.1007/BF02099262. Google Scholar

[6]

P.-H. Chavanis, Kinetic theory of $2D$ point vortices from a BBGKY-like hiearchy,, Physica A, 387 (2008), 1123. doi: 10.1016/j.physa.2007.10.022. Google Scholar

[7]

P.-H. Chavanis, Two-dimensional Brownian vortices,, Physica A, 387 (2008), 6917. doi: 10.1016/j.physa.2008.09.019. Google Scholar

[8]

C. Conca and E. Espejo, Threshold condition for global existence and blow-up to a radially symmetric drift-diffusion system,, Applied Mathematics Letters, 25 (2012), 352. doi: 10.1016/j.aml.2011.09.013. Google Scholar

[9]

C. Conca, E. Espejo and K. Vilches, Remarks on the blow-up and global existence for a two-species chemotactic Keller-Segel system in $R^2$,, Euro. J. Appl. Math., 22 (2011), 553. doi: 10.1017/S0956792511000258. Google Scholar

[10]

E. E. Espejo, M. Kurokiba and T. Suzuki, Blowup threshold and collapse mass separation for a drift-diffusion system in dimension two,, preprint., (). Google Scholar

[11]

E. E. Espejo, A. Stevens and T. Suzuki, Simultaneous blowup and mass separation during collapse in an interacting system of chemotactic species,, Differential and Integral Equations, 25 (2012), 251. Google Scholar

[12]

E. E. Espejo, A. Stevens and J. J. L. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis,, Analysis, 29 (2009), 317. doi: 10.1524/anly.2009.1029. Google Scholar

[13]

E. E. Espejo, A. Stevens and J. J. L. Velázquez, A note on non-simultaneous blow-up for a drift-diffusion model,, Differential and Integral Equations, 23 (2010), 451. Google Scholar

[14]

G. L. Eyink and H. Spohn, Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence,, J. Statistical Physics, 70 (1993), 833. doi: 10.1007/BF01053597. Google Scholar

[15]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis,, Math. Nachr., 195 (1998), 77. doi: 10.1002/mana.19981950106. Google Scholar

[16]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. doi: 10.2307/2153966. Google Scholar

[17]

G. Joyce and D. Montgomery, Negative temperature states for two-dimensional guiding-centre plasma,, J. Plasma Phys., 10 (1973), 107. Google Scholar

[18]

M. K. H. Kiessling, Statistical mechanics of classical particles with logarithmic interaction,, Comm. Pure Appl. Math., 46 (1993), 27. doi: 10.1002/cpa.3160460103. Google Scholar

[19]

M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type,, Differential and Integral Equations, 16 (2003), 427. Google Scholar

[20]

M. Kurokiba and T. Ogawa, Wellposedness of the drit-diffusion system in $L^p$ arising from the semiconductor device simulation,, J. Math. Anal. Appl., 342 (2008), 1052. doi: 10.1016/j.jmaa.2007.11.017. Google Scholar

[21]

M. Kurokiba, T. Nagai and T. Ogawa, The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system,, Comm. Pure Appl. Anal., 5 (2006), 97. Google Scholar

[22]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkcial. Ekvac., 40 (1997), 411. Google Scholar

[23]

K. Nagasaki and T. Suzuki, Asymptotic analysis for two-dimensional elliptic eivgnvalue problem with exponentially dominated nonlinearities,, Asymptoitc Analysis, 3 (1990), 173. Google Scholar

[24]

P. K. Newton, "The $N$-Vortex Problem: Analytical Techniques,", Applied Mathematical Sciences, 145 (2001). doi: 10.1007/978-1-4684-9290-3. Google Scholar

[25]

L. Onsager, Statistical hydrodynamics,, Suppl. Nuovo Cimento, 6 (1949), 279. doi: 10.1007/BF02780991. Google Scholar

[26]

T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology,, Adv. Differential Equations, 6 (2001), 21. Google Scholar

[27]

T. Senba and T. Suzuki, Parabolic system of chemotaxis; blowup in a finite and in the infinite time,, Meth. Appl. Anal., 8 (2001), 349. Google Scholar

[28]

I. Shafrir and G. Wolansky, Moser-Trudinger and logarithmic HLS inequalities for systems,, J. Euro. Math. Soc., 7 (2005), 413. doi: 10.4171/JEMS/34. Google Scholar

[29]

T. Suzuki, Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity,, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 9 (1992), 367. Google Scholar

[30]

T. Suzuki, "Free Energy and Self-Interacting Particles,'', Progress in Nonlinear Differential Equations and their Applications, 62 (2005). doi: 10.1007/0-8176-4436-9. Google Scholar

[31]

T. Suzuki, "Mean Field Theories and Dual Variation,'', Atlantis Studies in Mathematics for Engineering and Science, 2 (2008). Google Scholar

[32]

T. Suzuki and T. Senba, "Applied Analysis, Mathematical Methods in Natural Science,'', Second edition, (2011). Google Scholar

[33]

T. Suzuki, Exclusion of boundary blowup for $2D$ chemotaxis system provided with Dirichlet condition for the Poisson part,, preprint., (). doi: 10.1016/j.matpur.2013.01.004. Google Scholar

[1]

Gianluca Crippa, Milton C. Lopes Filho, Evelyne Miot, Helena J. Nussenzveig Lopes. Flows of vector fields with point singularities and the vortex-wave system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2405-2417. doi: 10.3934/dcds.2016.36.2405

[2]

Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125

[3]

Xavier Perrot, Xavier Carton. Point-vortex interaction in an oscillatory deformation field: Hamiltonian dynamics, harmonic resonance and transition to chaos. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 971-995. doi: 10.3934/dcdsb.2009.11.971

[4]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[5]

Shijin Ding, Qiang Du. The global minimizers and vortex solutions to a Ginzburg-Landau model of superconducting films. Communications on Pure & Applied Analysis, 2002, 1 (3) : 327-340. doi: 10.3934/cpaa.2002.1.327

[6]

Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic & Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501

[7]

Kentarou Fujie, Akio Ito, Michael Winkler, Tomomi Yokota. Stabilization in a chemotaxis model for tumor invasion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 151-169. doi: 10.3934/dcds.2016.36.151

[8]

Alina Chertock, Alexander Kurganov, Xuefeng Wang, Yaping Wu. On a chemotaxis model with saturated chemotactic flux. Kinetic & Related Models, 2012, 5 (1) : 51-95. doi: 10.3934/krm.2012.5.51

[9]

Hua Chen, Shaohua Wu. The moving boundary problem in a chemotaxis model. Communications on Pure & Applied Analysis, 2012, 11 (2) : 735-746. doi: 10.3934/cpaa.2012.11.735

[10]

Nicola Bellomo, Youshan Tao. Stabilization in a chemotaxis model for virus infection. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 105-117. doi: 10.3934/dcdss.2020006

[11]

V. Styles. A note on the convergence in the limit of a long wave vortex density superconductivity model to the Bean model. Communications on Pure & Applied Analysis, 2002, 1 (4) : 485-494. doi: 10.3934/cpaa.2002.1.485

[12]

Anne Nouri, Christian Schmeiser. Aggregated steady states of a kinetic model for chemotaxis. Kinetic & Related Models, 2017, 10 (1) : 313-327. doi: 10.3934/krm.2017013

[13]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

[14]

Shen Bian, Li Chen, Evangelos A. Latos. Chemotaxis model with nonlocal nonlinear reaction in the whole space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5067-5083. doi: 10.3934/dcds.2018222

[15]

Manuel Delgado, Inmaculada Gayte, Cristian Morales-Rodrigo, Antonio Suárez. On a chemotaxis model with competitive terms arising in angiogenesis. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 177-202. doi: 10.3934/dcdss.2020010

[16]

Tong Li, Jeungeun Park. Traveling waves in a chemotaxis model with logistic growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-16. doi: 10.3934/dcdsb.2019147

[17]

Tae-Yeon Kim, Xuemei Chen, John E. Dolbow, Eliot Fried. Going to new lengths: Studying the Navier--Stokes-$\alpha\beta$ equations using the strained spiral vortex model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2207-2225. doi: 10.3934/dcdsb.2014.19.2207

[18]

Francesca R. Guarguaglini. Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network. Networks & Heterogeneous Media, 2018, 13 (1) : 47-67. doi: 10.3934/nhm.2018003

[19]

Alexandre Montaru. Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 231-256. doi: 10.3934/dcdsb.2014.19.231

[20]

Zhi-An Wang, Kun Zhao. Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3027-3046. doi: 10.3934/cpaa.2013.12.3027

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]