• Previous Article
    Existence and decay of solutions of the 2D QG equation in the presence of an obstacle
  • DCDS-S Home
  • This Issue
  • Next Article
    A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium
October  2014, 7(5): 1045-1063. doi: 10.3934/dcdss.2014.7.1045

Stokes and Navier-Stokes equations with perfect slip on wedge type domains

1. 

Heinrich-Heine-Universität Düsseldorf, Mathematisches Institut, 40204 Düsseldorf, Germany, Germany

Received  March 2013 Revised  June 2013 Published  May 2014

Well-posedness of the Stokes and Navier-Stokes equations subject to perfect slip boundary conditions on wedge type domains is studied. Applying the operator sum method we derive an $\mathcal{H}^\infty$-calculus for the Stokes operator in weighted $L^p_\gamma$ spaces (Kondrat'ev spaces) which yields maximal regularity for the linear Stokes system. This in turn implies mild well-posedness for the Navier-Stokes equations, locally-in-time for arbitrary and globally-in-time for small data in $L^p$.
Citation: Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045
References:
[1]

W. Borchers and T. Miyakawa, $L^2$ decay for the Navier-Stokes flow in halfspaces,, Math. Ann., 282 (1988), 139. doi: 10.1007/BF01457017.

[2]

G. Da Prato and P. Grisvard, Sommes d'oprateurs linaires et quations diffrentielles oprationelles,, J. Math. Pures Appl., 54 (1975), 305.

[3]

R. Denk, M. Hieber and J. Prüss, $\mathcalR$-boundedness, Fourier multipliers and problems of elliptic and parabolic type,, Mem. Am. Math. Soc., 166 (2003). doi: 10.1090/memo/0788.

[4]

R. Denk and M. Geißert, J. Saal and O. Sawada, The spin-coating process: Analysis of the free boundary value problem,, Commun. Partial Differ. Equations, 36 (2011), 1145. doi: 10.1080/03605302.2010.546469.

[5]

G. Dore and A. Venni, On the closedness of the sum of two operators,, Math. Z., 196 (1987), 189. doi: 10.1007/BF01163654.

[6]

A. Friedman, Partial Differential Equations,, Holt, (1969).

[7]

A. Friedman and J. L. Velázquez, Time-dependent coating flows in a strip. I: The linearized problem,, Trans. Am. Math. Soc., 349 (1997), 2981. doi: 10.1090/S0002-9947-97-01956-9.

[8]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,, Springer Monographs in Mathematics, (2011). doi: 10.1007/978-0-387-09620-9.

[9]

Y. Giga, Solutions for semilinear parabolic equations in $L_p$ and regularity of weak solutions of the Navier-Stokes system,, Journal of Differential Equations, 62 (1986), 186. doi: 10.1016/0022-0396(86)90096-3.

[10]

M. Haase, The Functional Calculus for Sectorial Operators,, Operator Theory: Advances and Applications, (2006). doi: 10.1007/3-7643-7698-8.

[11]

P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev Spaces,, Acta Math., 147 (1981), 71. doi: 10.1007/BF02392869.

[12]

N. Kalton and L. Weis, The $H^\infty$-calculus and sums of closed operators,, Math. Ann., 321 (2001), 319. doi: 10.1007/s002080100231.

[13]

P. Kunstmann and L. Weis, Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus,, in Functional analytic methods for evolution equations, (1855), 65. doi: 10.1007/978-3-540-44653-8_2.

[14]

R. Labbas and B. Terreni, Somme d'opérateurs linéaires de type parabolique,, Boll. Un. Mat. Ital., 7 (1987), 545.

[15]

V. N. Maslennikova and M. E. Bogovski, Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries,, Rendiconti del Seminario Matematico e Fisico di Milano, 56 (1986), 125. doi: 10.1007/BF02925141.

[16]

M. Mitrea and S. Monniaux, On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds,, Transactions of the American Mathematical Society, 361 (2009), 3125. doi: 10.1090/S0002-9947-08-04827-7.

[17]

M. Mitrea and S. Monniaux, The nonlinear Hodge-Navier-Stokes equations in Lipschitz domains,, Differential and Integral Equations, 22 (2009), 339.

[18]

T. Nau and J. Saal, H-infinity-calculus for cylindrical boundary value problems,, Advances in Differential Equations, 17 (2012), 767.

[19]

A. I. Nazarov, $L_p$-estimates for a solution to the Dirichlet problem and to the Neumann problem for the heat equation in a wedge with edge of arbitrary codimension,, J. Math. Sci., 106 (2001), 2989. doi: 10.1023/A:1011319521775.

[20]

A. Noll and J. Saal, $H^\infty$-calculus for the Stokes operator on Lq-spaces,, Math. Z., 244 (2003), 651.

[21]

J. Prüss, Evolutionary Integral Equations and Applications,, Monographs in Mathematics, (1993). doi: 10.1007/978-3-0348-8570-6.

[22]

J. Prüss and S. Shimizu and Y. Shibata and G. Simonett, On well-posedness of incompressible two-phase flows with phase transitions: The case of equal densities,, Evolution Equations and Control Theory, 1 (2012), 171. doi: 10.3934/eect.2012.1.171.

[23]

J. Prüss and G. Simonett, $H^{\infty}$-calculus for the sum of non-commuting operators,, Trans. Amer. Math. Soc., 359 (2007), 3549. doi: 10.1090/S0002-9947-07-04291-2.

[24]

J. Saal, Robin Boundary Conditions and Bounded $H^\infty$-Calculus for the Stokes Operator,, Logos-Verlag, (2003).

[25]

J. Saal, Stokes and Navier-Stokes equations with Robin boundary conditions in a half-space,, J. Math. Fluid Mech., 8 (2006), 211. doi: 10.1007/s00021-004-0143-5.

[26]

B. Schweizer, A well-posed model for dynamic contact angles,, Nonlinear Anal. Theory Methods Appl., 43 (2001), 109. doi: 10.1016/S0362-546X(99)00183-2.

[27]

V. A. Solonnikov, On some free boundary problems for the Navier-Stokes equations with moving contact points and lines,, Math. Ann., 302 (1995), 743. doi: 10.1007/BF01444515.

show all references

References:
[1]

W. Borchers and T. Miyakawa, $L^2$ decay for the Navier-Stokes flow in halfspaces,, Math. Ann., 282 (1988), 139. doi: 10.1007/BF01457017.

[2]

G. Da Prato and P. Grisvard, Sommes d'oprateurs linaires et quations diffrentielles oprationelles,, J. Math. Pures Appl., 54 (1975), 305.

[3]

R. Denk, M. Hieber and J. Prüss, $\mathcalR$-boundedness, Fourier multipliers and problems of elliptic and parabolic type,, Mem. Am. Math. Soc., 166 (2003). doi: 10.1090/memo/0788.

[4]

R. Denk and M. Geißert, J. Saal and O. Sawada, The spin-coating process: Analysis of the free boundary value problem,, Commun. Partial Differ. Equations, 36 (2011), 1145. doi: 10.1080/03605302.2010.546469.

[5]

G. Dore and A. Venni, On the closedness of the sum of two operators,, Math. Z., 196 (1987), 189. doi: 10.1007/BF01163654.

[6]

A. Friedman, Partial Differential Equations,, Holt, (1969).

[7]

A. Friedman and J. L. Velázquez, Time-dependent coating flows in a strip. I: The linearized problem,, Trans. Am. Math. Soc., 349 (1997), 2981. doi: 10.1090/S0002-9947-97-01956-9.

[8]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,, Springer Monographs in Mathematics, (2011). doi: 10.1007/978-0-387-09620-9.

[9]

Y. Giga, Solutions for semilinear parabolic equations in $L_p$ and regularity of weak solutions of the Navier-Stokes system,, Journal of Differential Equations, 62 (1986), 186. doi: 10.1016/0022-0396(86)90096-3.

[10]

M. Haase, The Functional Calculus for Sectorial Operators,, Operator Theory: Advances and Applications, (2006). doi: 10.1007/3-7643-7698-8.

[11]

P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev Spaces,, Acta Math., 147 (1981), 71. doi: 10.1007/BF02392869.

[12]

N. Kalton and L. Weis, The $H^\infty$-calculus and sums of closed operators,, Math. Ann., 321 (2001), 319. doi: 10.1007/s002080100231.

[13]

P. Kunstmann and L. Weis, Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus,, in Functional analytic methods for evolution equations, (1855), 65. doi: 10.1007/978-3-540-44653-8_2.

[14]

R. Labbas and B. Terreni, Somme d'opérateurs linéaires de type parabolique,, Boll. Un. Mat. Ital., 7 (1987), 545.

[15]

V. N. Maslennikova and M. E. Bogovski, Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries,, Rendiconti del Seminario Matematico e Fisico di Milano, 56 (1986), 125. doi: 10.1007/BF02925141.

[16]

M. Mitrea and S. Monniaux, On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds,, Transactions of the American Mathematical Society, 361 (2009), 3125. doi: 10.1090/S0002-9947-08-04827-7.

[17]

M. Mitrea and S. Monniaux, The nonlinear Hodge-Navier-Stokes equations in Lipschitz domains,, Differential and Integral Equations, 22 (2009), 339.

[18]

T. Nau and J. Saal, H-infinity-calculus for cylindrical boundary value problems,, Advances in Differential Equations, 17 (2012), 767.

[19]

A. I. Nazarov, $L_p$-estimates for a solution to the Dirichlet problem and to the Neumann problem for the heat equation in a wedge with edge of arbitrary codimension,, J. Math. Sci., 106 (2001), 2989. doi: 10.1023/A:1011319521775.

[20]

A. Noll and J. Saal, $H^\infty$-calculus for the Stokes operator on Lq-spaces,, Math. Z., 244 (2003), 651.

[21]

J. Prüss, Evolutionary Integral Equations and Applications,, Monographs in Mathematics, (1993). doi: 10.1007/978-3-0348-8570-6.

[22]

J. Prüss and S. Shimizu and Y. Shibata and G. Simonett, On well-posedness of incompressible two-phase flows with phase transitions: The case of equal densities,, Evolution Equations and Control Theory, 1 (2012), 171. doi: 10.3934/eect.2012.1.171.

[23]

J. Prüss and G. Simonett, $H^{\infty}$-calculus for the sum of non-commuting operators,, Trans. Amer. Math. Soc., 359 (2007), 3549. doi: 10.1090/S0002-9947-07-04291-2.

[24]

J. Saal, Robin Boundary Conditions and Bounded $H^\infty$-Calculus for the Stokes Operator,, Logos-Verlag, (2003).

[25]

J. Saal, Stokes and Navier-Stokes equations with Robin boundary conditions in a half-space,, J. Math. Fluid Mech., 8 (2006), 211. doi: 10.1007/s00021-004-0143-5.

[26]

B. Schweizer, A well-posed model for dynamic contact angles,, Nonlinear Anal. Theory Methods Appl., 43 (2001), 109. doi: 10.1016/S0362-546X(99)00183-2.

[27]

V. A. Solonnikov, On some free boundary problems for the Navier-Stokes equations with moving contact points and lines,, Math. Ann., 302 (1995), 743. doi: 10.1007/BF01444515.

[1]

Matthias Geissert, Horst Heck, Christof Trunk. $H^{\infty}$-calculus for a system of Laplace operators with mixed order boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1259-1275. doi: 10.3934/dcdss.2013.6.1259

[2]

Antonio Vitolo. $H^{1,p}$-eigenvalues and $L^\infty$-estimates in quasicylindrical domains. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1315-1329. doi: 10.3934/cpaa.2011.10.1315

[3]

Boris Muha, Zvonimir Tutek. Note on evolutionary free piston problem for Stokes equations with slip boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1629-1639. doi: 10.3934/cpaa.2014.13.1629

[4]

Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783

[5]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[6]

Linjie Xiong. Incompressible Limit of isentropic Navier-Stokes equations with Navier-slip boundary. Kinetic & Related Models, 2018, 11 (3) : 469-490. doi: 10.3934/krm.2018021

[7]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[8]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[9]

Gilberto M. Kremer, Filipe Oliveira, Ana Jacinta Soares. $\mathcal H$-Theorem and trend to equilibrium of chemically reacting mixtures of gases. Kinetic & Related Models, 2009, 2 (2) : 333-343. doi: 10.3934/krm.2009.2.333

[10]

Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284

[11]

Ming Wang, Yanbin Tang. Attractors in $H^2$ and $L^{2p-2}$ for reaction diffusion equations on unbounded domains. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1111-1121. doi: 10.3934/cpaa.2013.12.1111

[12]

Gisella Croce, Nikos Katzourakis, Giovanni Pisante. $\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6165-6181. doi: 10.3934/dcds.2017266

[13]

M. S. Mahmoud, P. Shi, Y. Shi. $H_\infty$ and robust control of interconnected systems with Markovian jump parameters. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 365-384. doi: 10.3934/dcdsb.2005.5.365

[14]

Amol Sasane. Extension of the $\nu$-metric for stabilizable plants over $H^\infty$. Mathematical Control & Related Fields, 2012, 2 (1) : 29-44. doi: 10.3934/mcrf.2012.2.29

[15]

Eduard Feireisl, Josef Málek, Antonín Novotný. Navier's slip and incompressible limits in domains with variable bottoms. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 427-460. doi: 10.3934/dcdss.2008.1.427

[16]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Hiroki Tanabe, Atsushi Yagi. Necessary and sufficient conditions for maximal regularity in the study of elliptic differential equations in Hölder spaces. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 973-987. doi: 10.3934/dcds.2008.22.973

[17]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[18]

Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098

[19]

Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure & Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353

[20]

Yuming Qin, Lan Huang, Zhiyong Ma. Global existence and exponential stability in $H^4$ for the nonlinear compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1991-2012. doi: 10.3934/cpaa.2009.8.1991

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]