April  2013, 6(4): 861-890. doi: 10.3934/dcdss.2013.6.861

Chaos in forced impact systems

1. 

Dipartimento di Ingegneria Industriale e Scienze Matematiche

2. 

Marche Polytecnic University, Via Brecce Bianche 1

3. 

60131 Ancona

4. 

Department of Mathematical Analysis and Numerical Mathematics

5. 

Comenius University

6. 

Mlynsk dolina, 842 48 Bratislava

Received  October 2011 Revised  February 2012 Published  December 2012

We follow a functional analytic approach to study the problem of chaotic behaviour in time-perturbed impact systems whose unperturbed part has a piecewise continuous impact homoclinic solution that transversally enters the discontinuity manifold. We show that if a certain Melnikov function has a simple zero at some point, then the system has impact solutions that behave chaotically. Applications of this result to quasi periodic systems are also given.
Citation: Flaviano Battelli, Michal Fe?kan. Chaos in forced impact systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 861-890. doi: 10.3934/dcdss.2013.6.861
References:
[1]

J. Appell, V. Lakshmikantham, Nguyen Van Minh and P. P. Zabreiko, A general model of evolutionary processes. Exponential dichotomy - I, II,, Nonlinear Analysis TMA, 21 (1993), 207. doi: 10.1016/0362-546X(93)90111-5. Google Scholar

[2]

J. Appell, V. B. Moroz, A. Vignoli and P. P. Zabrejko, On the application of Kielhöfer's bifurcation theorem to Hammerstein equations with potential nonlinearity,, Boll. Unione Math. Ital., 8-B (1994), 833. Google Scholar

[3]

J. Appell and P. P. Zabrejko, Bifurcation points for integral equations of Hammerstein type,, J. Integral Equations Operator Theory, 16 (1993), 15. doi: 10.1007/BF01196600. Google Scholar

[4]

J. Awrejcewicz, M. Fečkan and P. Olejnik, On continuous approximation of discontinuous systems,, Nonlinear Analysis TMA, 62 (2005), 1317. doi: 10.1016/j.na.2005.04.033. Google Scholar

[5]

J. Awrejcewicz, M. Fečkan and P. Olejnik, Bifurcations of planar sliding homoclinics,, Mathematical Problems in Engineering, 2006 (2006), 1. doi: 10.1155/MPE/2006/85349. Google Scholar

[6]

F. Battelli and M. Fečkan, Chaos arising near a topologically transversal homoclinic set,, Topol. Methods Nonlinear Anal., 20 (2002), 195. Google Scholar

[7]

F. Battelli and M. Fečkan, On the chaotic behaviour of discontinuous systems,, J. Dynamics Differential Equations, 23 (2011), 495. doi: 10.1007/s10884-010-9197-7. Google Scholar

[8]

F. Battelli and M. Fečkan, Homoclinic trajectories in discontinuous systems,, J. Dynamics Differential Equations, 20 (2008), 337. doi: 10.1007/s10884-007-9087-9. Google Scholar

[9]

F. Battelli and M. Fečkan, An example of chaotic behaviour in presence of a sliding homoclinic orbit,, Annali di Matematica Pura ed Applicata, 189 (2010), 615. doi: 10.1007/s10231-010-0128-3. Google Scholar

[10]

F. Battelli and M. Fečkan, Bifurcation and chaos near sliding homoclinics,, J. Differential Equations, 248 (2010), 2227. doi: 10.1016/j.jde.2009.11.003. Google Scholar

[11]

F. Battelli and C. Lazzari, Exponential dichotomies, heteroclinic orbits, and Melnikov functions,, J. Differential Equations, 86 (1990), 342. doi: 10.1016/0022-0396(90)90034-M. Google Scholar

[12]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, "Piecewise-smooth Dynamical Systems: Theory and Applications,", Springer, (2008). Google Scholar

[13]

B. Brogliato, "Nonsmooth Impact Mechanics,", Lecture Notes in Control and Information Sciences, (1996). Google Scholar

[14]

C. Chicone, "Ordinary Differential Equations with Applications,", Springer, (2006). Google Scholar

[15]

D. R. J. Chillingworth, Discontinuous geometry for an impact oscillator,, Dynamical Systems, 17 (2002), 389. doi: 10.1080/1468936021000041654. Google Scholar

[16]

S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory,", Springer-Verlag, (1982). Google Scholar

[17]

Z. Du and W. Zhang, Melnikov method for homoclinic bifurcation in nonlinear impact oscillators,, Computers and Mathematics with Applications, 50 (2005), 445. doi: 10.1016/j.camwa.2005.03.007. Google Scholar

[18]

M. Fečkan, "Topological Degree Approach to Bifurcation Problems,", Springer, (2008). doi: 10.1007/978-1-4020-8724-0. Google Scholar

[19]

A. Fidlin, "Nonlinear Oscillations in Mechanical Engineering,", Springer, (2006). Google Scholar

[20]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer-Verlag, (1983). Google Scholar

[21]

J. Knobloch, Lin's method for discrete dynamical systems,, J. Difference Equations and Applications, 6 (2000), 577. doi: 10.1080/10236190008808247. Google Scholar

[22]

A. Kovaleva, The Melnikov criterion of instability for random rocking dynamics of a rigid block with an attached secondary structure,, Nonlinear Analysis RWA, 11 (2010), 472. doi: 10.1016/j.nonrwa.2008.12.001. Google Scholar

[23]

M. A. Krasnosel'skii and P. P. Zabreiko, "Geometrical Methods of Nonlinear Analysis,", Springer-Verlag, (1984). doi: 10.1007/978-3-642-69409-7. Google Scholar

[24]

M. Kunze, "Non-smooth Dynamical Systems,", Springer, (2000). doi: 10.1007/BFb0103843. Google Scholar

[25]

R. I. Leine and H. Nijmeijer, "Dynamics and Bifurcations of Non-smooth Mechanical Systems,", Springer-Verlag, (2004). Google Scholar

[26]

S. Lenci and G. Rega, Heteroclinic bifurcations and optimal control in the nonlinear rocking dynamics of generic and slender rigid blocks,, Int. J. Bif. Chaos, 15 (2005), 1901. doi: 10.1142/S0218127405013046. Google Scholar

[27]

B. M. Levitan and V. V. Zhikov, "Almost Periodic Functions and Differential Equations,", Cambridge University Press, (1983). Google Scholar

[28]

X.-B. Lin, Using Melnikov's method to solve Silnikov's problems,, Proc. Roy. Soc. Edinburgh, 116A (1990), 295. doi: 10.1017/S0308210500031528. Google Scholar

[29]

O. Makarenkov and F. Verhulst, Bifurcation of asymptotically stable periodic solutions in nearly impact oscillators,, preprint, (). Google Scholar

[30]

K. R. Meyer and G. R. Sell, Melnikov transforms, Bernoulli bundles, and almost periodic perturbations,, Trans. Amer. Math. Soc., 314 (1989), 63. doi: 10.2307/2001437. Google Scholar

[31]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points,, J. Differential Equations, 55 (1984), 225. doi: 10.1016/0022-0396(84)90082-2. Google Scholar

[32]

K. J. Palmer and D. Stoffer, Chaos in almost periodic systems,, Z. Angew. Math. Phys. (ZAMP), 40 (1989), 592. doi: 10.1007/BF00944809. Google Scholar

[33]

B. Sandstede, "Verzweigungstheorie Homokliner Verdopplungen,", PhD thesis, (1993). Google Scholar

[34]

D. Stoffer, Transversal homoclinic points and hyperbolic sets for non-autonomous maps I, II,, Z. angew. Math. Phys. (ZAMP), 39 (1988), 518. Google Scholar

[35]

A. Vanderbauwhede and B. Fiedler, Homoclinic period blow-up in reversible and conservative systems,, Z. Angew. Math. Phys. (ZAMP), 43 (1992), 292. doi: 10.1007/BF00946632. Google Scholar

[36]

P. P. Zabrejko and A. I. Povolockij, Bifurcation points of Hammerstein's equations,, Soviet Mathematics: Doklady, 11 (1970), 1220. Google Scholar

[37]

W. Xu, J. Feng and H. Rong, Melnikov's method for a general nonlinear vibro-impact oscillator,, Nonlinear Analysis TMA, 71 (2009), 418. doi: 10.1016/j.na.2008.10.120. Google Scholar

show all references

References:
[1]

J. Appell, V. Lakshmikantham, Nguyen Van Minh and P. P. Zabreiko, A general model of evolutionary processes. Exponential dichotomy - I, II,, Nonlinear Analysis TMA, 21 (1993), 207. doi: 10.1016/0362-546X(93)90111-5. Google Scholar

[2]

J. Appell, V. B. Moroz, A. Vignoli and P. P. Zabrejko, On the application of Kielhöfer's bifurcation theorem to Hammerstein equations with potential nonlinearity,, Boll. Unione Math. Ital., 8-B (1994), 833. Google Scholar

[3]

J. Appell and P. P. Zabrejko, Bifurcation points for integral equations of Hammerstein type,, J. Integral Equations Operator Theory, 16 (1993), 15. doi: 10.1007/BF01196600. Google Scholar

[4]

J. Awrejcewicz, M. Fečkan and P. Olejnik, On continuous approximation of discontinuous systems,, Nonlinear Analysis TMA, 62 (2005), 1317. doi: 10.1016/j.na.2005.04.033. Google Scholar

[5]

J. Awrejcewicz, M. Fečkan and P. Olejnik, Bifurcations of planar sliding homoclinics,, Mathematical Problems in Engineering, 2006 (2006), 1. doi: 10.1155/MPE/2006/85349. Google Scholar

[6]

F. Battelli and M. Fečkan, Chaos arising near a topologically transversal homoclinic set,, Topol. Methods Nonlinear Anal., 20 (2002), 195. Google Scholar

[7]

F. Battelli and M. Fečkan, On the chaotic behaviour of discontinuous systems,, J. Dynamics Differential Equations, 23 (2011), 495. doi: 10.1007/s10884-010-9197-7. Google Scholar

[8]

F. Battelli and M. Fečkan, Homoclinic trajectories in discontinuous systems,, J. Dynamics Differential Equations, 20 (2008), 337. doi: 10.1007/s10884-007-9087-9. Google Scholar

[9]

F. Battelli and M. Fečkan, An example of chaotic behaviour in presence of a sliding homoclinic orbit,, Annali di Matematica Pura ed Applicata, 189 (2010), 615. doi: 10.1007/s10231-010-0128-3. Google Scholar

[10]

F. Battelli and M. Fečkan, Bifurcation and chaos near sliding homoclinics,, J. Differential Equations, 248 (2010), 2227. doi: 10.1016/j.jde.2009.11.003. Google Scholar

[11]

F. Battelli and C. Lazzari, Exponential dichotomies, heteroclinic orbits, and Melnikov functions,, J. Differential Equations, 86 (1990), 342. doi: 10.1016/0022-0396(90)90034-M. Google Scholar

[12]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, "Piecewise-smooth Dynamical Systems: Theory and Applications,", Springer, (2008). Google Scholar

[13]

B. Brogliato, "Nonsmooth Impact Mechanics,", Lecture Notes in Control and Information Sciences, (1996). Google Scholar

[14]

C. Chicone, "Ordinary Differential Equations with Applications,", Springer, (2006). Google Scholar

[15]

D. R. J. Chillingworth, Discontinuous geometry for an impact oscillator,, Dynamical Systems, 17 (2002), 389. doi: 10.1080/1468936021000041654. Google Scholar

[16]

S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory,", Springer-Verlag, (1982). Google Scholar

[17]

Z. Du and W. Zhang, Melnikov method for homoclinic bifurcation in nonlinear impact oscillators,, Computers and Mathematics with Applications, 50 (2005), 445. doi: 10.1016/j.camwa.2005.03.007. Google Scholar

[18]

M. Fečkan, "Topological Degree Approach to Bifurcation Problems,", Springer, (2008). doi: 10.1007/978-1-4020-8724-0. Google Scholar

[19]

A. Fidlin, "Nonlinear Oscillations in Mechanical Engineering,", Springer, (2006). Google Scholar

[20]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer-Verlag, (1983). Google Scholar

[21]

J. Knobloch, Lin's method for discrete dynamical systems,, J. Difference Equations and Applications, 6 (2000), 577. doi: 10.1080/10236190008808247. Google Scholar

[22]

A. Kovaleva, The Melnikov criterion of instability for random rocking dynamics of a rigid block with an attached secondary structure,, Nonlinear Analysis RWA, 11 (2010), 472. doi: 10.1016/j.nonrwa.2008.12.001. Google Scholar

[23]

M. A. Krasnosel'skii and P. P. Zabreiko, "Geometrical Methods of Nonlinear Analysis,", Springer-Verlag, (1984). doi: 10.1007/978-3-642-69409-7. Google Scholar

[24]

M. Kunze, "Non-smooth Dynamical Systems,", Springer, (2000). doi: 10.1007/BFb0103843. Google Scholar

[25]

R. I. Leine and H. Nijmeijer, "Dynamics and Bifurcations of Non-smooth Mechanical Systems,", Springer-Verlag, (2004). Google Scholar

[26]

S. Lenci and G. Rega, Heteroclinic bifurcations and optimal control in the nonlinear rocking dynamics of generic and slender rigid blocks,, Int. J. Bif. Chaos, 15 (2005), 1901. doi: 10.1142/S0218127405013046. Google Scholar

[27]

B. M. Levitan and V. V. Zhikov, "Almost Periodic Functions and Differential Equations,", Cambridge University Press, (1983). Google Scholar

[28]

X.-B. Lin, Using Melnikov's method to solve Silnikov's problems,, Proc. Roy. Soc. Edinburgh, 116A (1990), 295. doi: 10.1017/S0308210500031528. Google Scholar

[29]

O. Makarenkov and F. Verhulst, Bifurcation of asymptotically stable periodic solutions in nearly impact oscillators,, preprint, (). Google Scholar

[30]

K. R. Meyer and G. R. Sell, Melnikov transforms, Bernoulli bundles, and almost periodic perturbations,, Trans. Amer. Math. Soc., 314 (1989), 63. doi: 10.2307/2001437. Google Scholar

[31]

K. J. Palmer, Exponential dichotomies and transversal homoclinic points,, J. Differential Equations, 55 (1984), 225. doi: 10.1016/0022-0396(84)90082-2. Google Scholar

[32]

K. J. Palmer and D. Stoffer, Chaos in almost periodic systems,, Z. Angew. Math. Phys. (ZAMP), 40 (1989), 592. doi: 10.1007/BF00944809. Google Scholar

[33]

B. Sandstede, "Verzweigungstheorie Homokliner Verdopplungen,", PhD thesis, (1993). Google Scholar

[34]

D. Stoffer, Transversal homoclinic points and hyperbolic sets for non-autonomous maps I, II,, Z. angew. Math. Phys. (ZAMP), 39 (1988), 518. Google Scholar

[35]

A. Vanderbauwhede and B. Fiedler, Homoclinic period blow-up in reversible and conservative systems,, Z. Angew. Math. Phys. (ZAMP), 43 (1992), 292. doi: 10.1007/BF00946632. Google Scholar

[36]

P. P. Zabrejko and A. I. Povolockij, Bifurcation points of Hammerstein's equations,, Soviet Mathematics: Doklady, 11 (1970), 1220. Google Scholar

[37]

W. Xu, J. Feng and H. Rong, Melnikov's method for a general nonlinear vibro-impact oscillator,, Nonlinear Analysis TMA, 71 (2009), 418. doi: 10.1016/j.na.2008.10.120. Google Scholar

[1]

Francesca Alessio, Vittorio Coti Zelati, Piero Montecchiari. Chaotic behavior of rapidly oscillating Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 687-707. doi: 10.3934/dcds.2004.10.687

[2]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[3]

Matthew Nicol. Induced maps of hyperbolic Bernoulli systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 147-154. doi: 10.3934/dcds.2001.7.147

[4]

Chao Wang, Dingbian Qian, Qihuai Liu. Impact oscillators of Hill's type with indefinite weight: Periodic and chaotic dynamics. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2305-2328. doi: 10.3934/dcds.2016.36.2305

[5]

Yi-Chiuan Chen. Bernoulli shift for second order recurrence relations near the anti-integrable limit. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 587-598. doi: 10.3934/dcdsb.2005.5.587

[6]

A.V. Borisov, A.A. Kilin, I.S. Mamaev. Reduction and chaotic behavior of point vortices on a plane and a sphere. Conference Publications, 2005, 2005 (Special) : 100-109. doi: 10.3934/proc.2005.2005.100

[7]

M. L. Bertotti, Sergey V. Bolotin. Chaotic trajectories for natural systems on a torus. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1343-1357. doi: 10.3934/dcds.2003.9.1343

[8]

Sheng Zhu, Jinting Wang. Strategic behavior and optimal strategies in an M/G/1 queue with Bernoulli vacations. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1297-1322. doi: 10.3934/jimo.2018008

[9]

Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785

[10]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[11]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[12]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[13]

Farrukh Mukhamedov, Otabek Khakimov. Chaotic behavior of the P-adic Potts-Bethe mapping. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 231-245. doi: 10.3934/dcds.2018011

[14]

Hamid Norouzi Nav, Mohammad Reza Jahed Motlagh, Ahmad Makui. Modeling and analyzing the chaotic behavior in supply chain networks: a control theoretic approach. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1123-1141. doi: 10.3934/jimo.2018002

[15]

Samuel Bowong, Jean Luc Dimi. Adaptive synchronization of a class of uncertain chaotic systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 235-248. doi: 10.3934/dcdsb.2008.9.235

[16]

Stefano Galatolo. Global and local complexity in weakly chaotic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1607-1624. doi: 10.3934/dcds.2003.9.1607

[17]

Noah H. Rhee, PaweŁ Góra, Majid Bani-Yaghoub. Predicting and estimating probability density functions of chaotic systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 297-319. doi: 10.3934/dcdsb.2017144

[18]

Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021

[19]

G. A. Braga, A. Procacci, R. Sanchis. Ornstein-Zernike behavior for the Bernoulli bond percolation on $\mathbb Z^d$ in the supercritical regime. Communications on Pure & Applied Analysis, 2004, 3 (4) : 581-606. doi: 10.3934/cpaa.2004.3.581

[20]

Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]