June  2013, 6(3): 783-791. doi: 10.3934/dcdss.2013.6.783

Dispersive waves with multiple tunnel effect on a star-shaped network

1. 

Université de Valenciennes et du Hainaut-Cambrésis, LAMAV, FR CNRS 2956, F-59313 Valenciennes, France

2. 

TU Darmstadt, Fachbereich Mathematik, Schloßgartenstraße 7, D-64289 Darmstadt, Germany, Germany

Received  April 2010 Revised  December 2010 Published  December 2012

We consider the Klein-Gordon equation on a star-shaped network composed of $n$ half-axes connected at their origins. We add a potential which is constant but different on each branch. The corresponding spatial operator is self-adjoint and we state explicit expressions for its resolvent and its resolution of the identity in terms of generalized eigenfunctions. This leads to a generalized Fourier type inversion formula in terms of an expansion in generalized eigenfunctions. This paper is a survey of a longer article, nevertheless the proof of the central formula is indicated.
Citation: F. Ali Mehmeti, R. Haller-Dintelmann, V. Régnier. Dispersive waves with multiple tunnel effect on a star-shaped network. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 783-791. doi: 10.3934/dcdss.2013.6.783
References:
[1]

F. Ali Mehmeti, Spectral theory and $L^{\infty}$-time decay estimates for Klein-Gordon equations on two half axes with transmission: The tunnel effect,, Math. Methods Appl. Sci., 17 (1994), 697. doi: 10.1002/mma.1670170904. Google Scholar

[2]

F. Ali Mehmeti, "Transient Tunnel Effect and Sommerfeld Problem: Waves in Semi-Infinite Structures,", Mathematical Research, 91 (1996). Google Scholar

[3]

F. Ali Mehmeti, R. Haller-Dintelmann and V. Régnier, Expansions in generalized eigenfunctions of the weighted Laplacian on star-shaped networks,, in, (2007), 1. doi: 10.1007/978-3-7643-7794-6_1. Google Scholar

[4]

F. Ali Mehmeti, R. Haller-Dintelmann and V. Régnier, Multiple tunnel effect for dispersive waves on a star-shaped network: an explicit formula for the spectral representation,, J. Evol. Equ., 12 (2012), 513. doi: 10.1007/s00028-012-0143-5. Google Scholar

[5]

F. Ali Mehmeti and V. Régnier, Splitting of energy of dispersive waves in a star-shaped network,, Z. Angew. Math. Mech., 83 (2003), 105. doi: 10.1002/zamm.200310010. Google Scholar

[6]

F. Ali Mehmeti and V. Régnier, Delayed reflection of the energy flow at a potential step for dispersive wave packets,, Math. Methods Appl. Sci., 27 (2004), 1145. doi: 10.1002/mma.484. Google Scholar

[7]

F. Ali Mehmeti and V. Régnier, Global existence and causality for a transmission problem with a repulsive nonlinearity,, Nonlinear Anal., 69 (2008), 408. doi: 10.1016/j.na.2007.05.028. Google Scholar

[8]

J. von Below and J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks, Results Math., 47 (2005), 199. Google Scholar

[9]

S. Cardanobile and D. Mugnolo, Parabolic systems with coupled boundary conditions,, J. Differential Equations, 247 (2009), 1229. doi: 10.1016/j.jde.2009.04.013. Google Scholar

[10]

Y. Daikh, "Temps de Passage de Paquets D'ondes de Basses Fréquences ou Limités en Bandes de Fréquences par une Barrière de Potentiel,", Thèse de Doctorat, (2004). Google Scholar

[11]

J. M. Deutch and F. E. Low, Barrier penetration and superluminal velocity,, Annals of Physics, 228 (1993), 184. doi: 10.1006/aphy.1993.1092. Google Scholar

[12]

N. Dunford and J. T. Schwartz, "Linear Operators II,", Wiley Interscience, (1963). Google Scholar

[13]

A. Enders and G. Nimtz, On superluminal barrier traversal,, J. Phys. I France, 2 (1992), 1693. Google Scholar

[14]

A. Haibel and G. Nimtz, Universal relationship of time and frequency in photonic tunnelling,, Ann. Physik (Leipzig), 10 (2001), 707. Google Scholar

[15]

V. Kostrykin and R. Schrader, The inverse scattering problem for metric graphs and the travelling salesman problem,, preprint, (). Google Scholar

[16]

M. Pozar, "Microwave Engineering,", Addison-Wesley, (1990). Google Scholar

[17]

J. Weidmann, "Spectral Theory of Ordinary Differential Operators,", Lecture Notes in Mathematics, 1258 (1987). Google Scholar

show all references

References:
[1]

F. Ali Mehmeti, Spectral theory and $L^{\infty}$-time decay estimates for Klein-Gordon equations on two half axes with transmission: The tunnel effect,, Math. Methods Appl. Sci., 17 (1994), 697. doi: 10.1002/mma.1670170904. Google Scholar

[2]

F. Ali Mehmeti, "Transient Tunnel Effect and Sommerfeld Problem: Waves in Semi-Infinite Structures,", Mathematical Research, 91 (1996). Google Scholar

[3]

F. Ali Mehmeti, R. Haller-Dintelmann and V. Régnier, Expansions in generalized eigenfunctions of the weighted Laplacian on star-shaped networks,, in, (2007), 1. doi: 10.1007/978-3-7643-7794-6_1. Google Scholar

[4]

F. Ali Mehmeti, R. Haller-Dintelmann and V. Régnier, Multiple tunnel effect for dispersive waves on a star-shaped network: an explicit formula for the spectral representation,, J. Evol. Equ., 12 (2012), 513. doi: 10.1007/s00028-012-0143-5. Google Scholar

[5]

F. Ali Mehmeti and V. Régnier, Splitting of energy of dispersive waves in a star-shaped network,, Z. Angew. Math. Mech., 83 (2003), 105. doi: 10.1002/zamm.200310010. Google Scholar

[6]

F. Ali Mehmeti and V. Régnier, Delayed reflection of the energy flow at a potential step for dispersive wave packets,, Math. Methods Appl. Sci., 27 (2004), 1145. doi: 10.1002/mma.484. Google Scholar

[7]

F. Ali Mehmeti and V. Régnier, Global existence and causality for a transmission problem with a repulsive nonlinearity,, Nonlinear Anal., 69 (2008), 408. doi: 10.1016/j.na.2007.05.028. Google Scholar

[8]

J. von Below and J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks, Results Math., 47 (2005), 199. Google Scholar

[9]

S. Cardanobile and D. Mugnolo, Parabolic systems with coupled boundary conditions,, J. Differential Equations, 247 (2009), 1229. doi: 10.1016/j.jde.2009.04.013. Google Scholar

[10]

Y. Daikh, "Temps de Passage de Paquets D'ondes de Basses Fréquences ou Limités en Bandes de Fréquences par une Barrière de Potentiel,", Thèse de Doctorat, (2004). Google Scholar

[11]

J. M. Deutch and F. E. Low, Barrier penetration and superluminal velocity,, Annals of Physics, 228 (1993), 184. doi: 10.1006/aphy.1993.1092. Google Scholar

[12]

N. Dunford and J. T. Schwartz, "Linear Operators II,", Wiley Interscience, (1963). Google Scholar

[13]

A. Enders and G. Nimtz, On superluminal barrier traversal,, J. Phys. I France, 2 (1992), 1693. Google Scholar

[14]

A. Haibel and G. Nimtz, Universal relationship of time and frequency in photonic tunnelling,, Ann. Physik (Leipzig), 10 (2001), 707. Google Scholar

[15]

V. Kostrykin and R. Schrader, The inverse scattering problem for metric graphs and the travelling salesman problem,, preprint, (). Google Scholar

[16]

M. Pozar, "Microwave Engineering,", Addison-Wesley, (1990). Google Scholar

[17]

J. Weidmann, "Spectral Theory of Ordinary Differential Operators,", Lecture Notes in Mathematics, 1258 (1987). Google Scholar

[1]

Robert Carlson. Spectral theory for nonconservative transmission line networks. Networks & Heterogeneous Media, 2011, 6 (2) : 257-277. doi: 10.3934/nhm.2011.6.257

[2]

Fabrizio Colombo, Graziano Gentili, Irene Sabadini and Daniele C. Struppa. A functional calculus in a noncommutative setting. Electronic Research Announcements, 2007, 14: 60-68. doi: 10.3934/era.2007.14.60

[3]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[4]

Vladimir V. Kisil. Mobius transformations and monogenic functional calculus. Electronic Research Announcements, 1996, 2: 26-33.

[5]

Michael Herty, Veronika Sachers. Adjoint calculus for optimization of gas networks. Networks & Heterogeneous Media, 2007, 2 (4) : 733-750. doi: 10.3934/nhm.2007.2.733

[6]

Daliang Zhao, Yansheng Liu, Xiaodi Li. Controllability for a class of semilinear fractional evolution systems via resolvent operators. Communications on Pure & Applied Analysis, 2019, 18 (1) : 455-478. doi: 10.3934/cpaa.2019023

[7]

Hassan Emamirad, Arnaud Rougirel. A functional calculus approach for the rational approximation with nonuniform partitions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 955-972. doi: 10.3934/dcds.2008.22.955

[8]

Viviana Alejandra Díaz, David Martín de Diego. Generalized variational calculus for continuous and discrete mechanical systems. Journal of Geometric Mechanics, 2018, 10 (4) : 373-410. doi: 10.3934/jgm.2018014

[9]

Daria Bugajewska, Mirosława Zima. On the spectral radius of linearly bounded operators and existence results for functional-differential equations. Conference Publications, 2003, 2003 (Special) : 147-155. doi: 10.3934/proc.2003.2003.147

[10]

Delfina Gómez, Sergey A. Nazarov, Eugenia Pérez. Spectral stiff problems in domains surrounded by thin stiff and heavy bands: Local effects for eigenfunctions. Networks & Heterogeneous Media, 2011, 6 (1) : 1-35. doi: 10.3934/nhm.2011.6.1

[11]

Nicolas Lerner, Yoshinori Morimoto, Karel Pravda-Starov, Chao-Jiang Xu. Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators. Kinetic & Related Models, 2013, 6 (3) : 625-648. doi: 10.3934/krm.2013.6.625

[12]

Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249

[13]

Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems & Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713

[14]

Ben-Yu Guo, Yu-Jian Jiao. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 315-345. doi: 10.3934/dcdsb.2009.11.315

[15]

Alessandra Pluda. Evolution of spoon-shaped networks. Networks & Heterogeneous Media, 2016, 11 (3) : 509-526. doi: 10.3934/nhm.2016007

[16]

Mustapha Mokhtar-Kharroubi. On permanent regimes for non-autonomous linear evolution equations in Banach spaces with applications to transport theory. Kinetic & Related Models, 2010, 3 (3) : 473-499. doi: 10.3934/krm.2010.3.473

[17]

Shengji Li, Xiaole Guo. Calculus rules of generalized $\epsilon-$subdifferential for vector valued mappings and applications. Journal of Industrial & Management Optimization, 2012, 8 (2) : 411-427. doi: 10.3934/jimo.2012.8.411

[18]

Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 539-560. doi: 10.3934/dcdss.2020030

[19]

Anirban Banerjee, Jürgen Jost. Spectral plot properties: Towards a qualitative classification of networks. Networks & Heterogeneous Media, 2008, 3 (2) : 395-411. doi: 10.3934/nhm.2008.3.395

[20]

Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]