June  2013, 6(3): 687-701. doi: 10.3934/dcdss.2013.6.687

Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates

1. 

Dipartimento di Matematica, Università di Bari, Via E. Orabona 4, 70125 Bari

Received  April 2010 Revised  April 2011 Published  December 2012

We prove null controllability results for the one dimensional degenerate heat equation in non divergence form with a drift term and Neumann boundary conditions. To this aim we prove Carleman estimates for the associated adjoint problem. Some linear extensions are considered.
Citation: Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687
References:
[1]

F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability,, J. Evol. Equ., 6 (2006), 161. doi: 10.1007/s00028-006-0222-6. Google Scholar

[2]

A. Bensoussan, G. Da Prato, M. C. Delfout and S. K. Mitter, "Representation and Control of Infinite Dimensional Systems,", Systems and Control: Foundations and Applications, (1993). Google Scholar

[3]

V. Barbu, A. Favini and S. Romanelli, Degenerate evolution equations and regularity of their associated semigroups,, Funkc. Eqv., 39 (1996), 421. Google Scholar

[4]

P. Cannarsa and G. Fragnelli, Null controllability of semilinear weakly degenerate parabolic equations in bounded domains,, Electron. J. Differential Equations, 2006 (2006), 1. Google Scholar

[5]

P. Cannarsa, G. Fragnelli and D. Rocchetti, Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form,, J. Evol. Equ., 8 (2008), 583. doi: 10.1007/s00028-008-0353-34. Google Scholar

[6]

P. Cannarsa, G. Fragnelli and D. Rocchetti, Null controllability of degenerate parabolic operators with drift,, Netw. Heterog. Media, 2 (2007), 693. doi: 10.3934/nhm.2007.2.695. Google Scholar

[7]

P. Cannarsa, G. Fragnelli and J. Vancostenoble, Linear degenerate parabolic equations in bounded domains: controllability and observability,, IFIP Int. Fed. Inf. Process, 202 (2006), 163. doi: 10.1007/0-387-33882-9_15. Google Scholar

[8]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators,, SIAM J. Control Optim., 47 (2008), 1. doi: 10.1137/04062062X. Google Scholar

[9]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates and null controllability for boundary-degenerate parabolic operators,, C. R. Acad. Sci. Paris, 347 (2009), 147. doi: 10.1016/j.crma.2008.12.011. Google Scholar

[10]

E. B. Davies, "Spectral Theory and Differential Operators,", Cambridge Studies in Advanced Mathematics, 42 (1995). doi: 10.1017/CBO9780511623721. Google Scholar

[11]

K. J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Springer-Verlag, (1999). Google Scholar

[12]

H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension,, Arch. Rational Mech. Anal., 43 (1971), 272. Google Scholar

[13]

H. O. Fattorini, "Infinite Dimensional Optimization and Control Theory,", Encyclopedia of Mathematics and its Applications, 62 (1999). Google Scholar

[14]

A. Favini, J. A. Goldstein and S. Romanelli, Analytic Semigroups on $L^p_\omega (0,1)$ Generated by Some Classes of Second Order Differential Operators,, Taiwanese J. Math., 3 (1999), 181. Google Scholar

[15]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Degenerate second order differential operators generating analytic semigroups in $L^p$ and $W^{1,p}$,, Math. Nachr., 238 (2002), 78. Google Scholar

[16]

A. Favini and A. Yagi, "Degenerate Differential Equations in Banach Spaces,", Monographs and Textbooks in Pure and Applied Mathematics, 215 (1999). Google Scholar

[17]

W. Feller, The parabolic differential equations and the associated semigroups of transformations,, Ann. of Math. (2), 55 (1952), 468. Google Scholar

[18]

W. Feller, Diffusion processes in one dimension,, Trans. Amer. Math. Soc., 77 (1954), 1. Google Scholar

[19]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 583. doi: 10.1016/S0294-1449(00)00117-7. Google Scholar

[20]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations,", Lecture Notes Series, 34 (1996). Google Scholar

[21]

J. A. Goldstein, R. M. Mininni and S. Romanelli, A new explicit formula for the solution of the Black-Merton-Scholes equation,, Infinite Dimensional Stochastic Analysis. Quantum Probab. White Noise Anal., 22 (2008), 226. doi: 10.1142/9789812779557_0013. Google Scholar

[22]

S. Karlin and H. M. Taylor, "A Second Course in Stochastic Processes,", Academic Press, (1981). Google Scholar

[23]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur,, Comm. Partial Differential Equations, 20 (1995), 335. doi: 10.1080/03605309508821097. Google Scholar

[24]

P. Mandl, "Analytical Treatment of One-Dimensional Markov Processes,", Die Grundlehren der mathematischen Wissenschaften, 151 (1968). Google Scholar

[25]

P. Martinez and J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations,, J. Evol. Equ., 6 (2006), 325. doi: 10.1007/s00028-006-0214-6. Google Scholar

[26]

P. Martinez, J. P. Raymond and J. Vancostenoble, Regional null controllability of a linearized Crocco-type equation,, SIAM J. Control Optim., 42 (2003), 709. doi: 10.1137/S0363012902403547. Google Scholar

[27]

G. Metafune and D. Pallara, Trace formulas for some singular differential operators and applications,, Math. Nachr., 211 (2000), 127. Google Scholar

[28]

S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-space,, Port. Math. (N.S.), 58 (2001), 1. Google Scholar

[29]

S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line,, Trans. Amer. Math. Soc., 353 (2001), 1635. doi: 10.1090/S0002-9947-00-02665-9. Google Scholar

[30]

R. M. Mininni and S. Romanelli, Martingale estimating functions for Feller diffusion processes generated by degenerate elliptic operators,, J. Concr. Appl. Math., 1 (2003), 191. Google Scholar

[31]

D. L. Russell, Controllability and stabilizability theorems for linear partial differential equations: recent progress and open questions,, SIAM Rev., 20 (1978), 639. doi: 10.1137/1020095. Google Scholar

[32]

N. Shimakura, "Partial Differential Operators of Elliptic Type,", Translations of Mathematical Monographs, 99 (1992). Google Scholar

[33]

D. Tataru, Carleman estimates, unique continuation and controllability for anizotropic PDE's,, Contemp. Math., 209 (1997), 267. doi: 10.1090/conm/209/02771. Google Scholar

show all references

References:
[1]

F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability,, J. Evol. Equ., 6 (2006), 161. doi: 10.1007/s00028-006-0222-6. Google Scholar

[2]

A. Bensoussan, G. Da Prato, M. C. Delfout and S. K. Mitter, "Representation and Control of Infinite Dimensional Systems,", Systems and Control: Foundations and Applications, (1993). Google Scholar

[3]

V. Barbu, A. Favini and S. Romanelli, Degenerate evolution equations and regularity of their associated semigroups,, Funkc. Eqv., 39 (1996), 421. Google Scholar

[4]

P. Cannarsa and G. Fragnelli, Null controllability of semilinear weakly degenerate parabolic equations in bounded domains,, Electron. J. Differential Equations, 2006 (2006), 1. Google Scholar

[5]

P. Cannarsa, G. Fragnelli and D. Rocchetti, Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form,, J. Evol. Equ., 8 (2008), 583. doi: 10.1007/s00028-008-0353-34. Google Scholar

[6]

P. Cannarsa, G. Fragnelli and D. Rocchetti, Null controllability of degenerate parabolic operators with drift,, Netw. Heterog. Media, 2 (2007), 693. doi: 10.3934/nhm.2007.2.695. Google Scholar

[7]

P. Cannarsa, G. Fragnelli and J. Vancostenoble, Linear degenerate parabolic equations in bounded domains: controllability and observability,, IFIP Int. Fed. Inf. Process, 202 (2006), 163. doi: 10.1007/0-387-33882-9_15. Google Scholar

[8]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators,, SIAM J. Control Optim., 47 (2008), 1. doi: 10.1137/04062062X. Google Scholar

[9]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates and null controllability for boundary-degenerate parabolic operators,, C. R. Acad. Sci. Paris, 347 (2009), 147. doi: 10.1016/j.crma.2008.12.011. Google Scholar

[10]

E. B. Davies, "Spectral Theory and Differential Operators,", Cambridge Studies in Advanced Mathematics, 42 (1995). doi: 10.1017/CBO9780511623721. Google Scholar

[11]

K. J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Springer-Verlag, (1999). Google Scholar

[12]

H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension,, Arch. Rational Mech. Anal., 43 (1971), 272. Google Scholar

[13]

H. O. Fattorini, "Infinite Dimensional Optimization and Control Theory,", Encyclopedia of Mathematics and its Applications, 62 (1999). Google Scholar

[14]

A. Favini, J. A. Goldstein and S. Romanelli, Analytic Semigroups on $L^p_\omega (0,1)$ Generated by Some Classes of Second Order Differential Operators,, Taiwanese J. Math., 3 (1999), 181. Google Scholar

[15]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Degenerate second order differential operators generating analytic semigroups in $L^p$ and $W^{1,p}$,, Math. Nachr., 238 (2002), 78. Google Scholar

[16]

A. Favini and A. Yagi, "Degenerate Differential Equations in Banach Spaces,", Monographs and Textbooks in Pure and Applied Mathematics, 215 (1999). Google Scholar

[17]

W. Feller, The parabolic differential equations and the associated semigroups of transformations,, Ann. of Math. (2), 55 (1952), 468. Google Scholar

[18]

W. Feller, Diffusion processes in one dimension,, Trans. Amer. Math. Soc., 77 (1954), 1. Google Scholar

[19]

E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 583. doi: 10.1016/S0294-1449(00)00117-7. Google Scholar

[20]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations,", Lecture Notes Series, 34 (1996). Google Scholar

[21]

J. A. Goldstein, R. M. Mininni and S. Romanelli, A new explicit formula for the solution of the Black-Merton-Scholes equation,, Infinite Dimensional Stochastic Analysis. Quantum Probab. White Noise Anal., 22 (2008), 226. doi: 10.1142/9789812779557_0013. Google Scholar

[22]

S. Karlin and H. M. Taylor, "A Second Course in Stochastic Processes,", Academic Press, (1981). Google Scholar

[23]

G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur,, Comm. Partial Differential Equations, 20 (1995), 335. doi: 10.1080/03605309508821097. Google Scholar

[24]

P. Mandl, "Analytical Treatment of One-Dimensional Markov Processes,", Die Grundlehren der mathematischen Wissenschaften, 151 (1968). Google Scholar

[25]

P. Martinez and J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations,, J. Evol. Equ., 6 (2006), 325. doi: 10.1007/s00028-006-0214-6. Google Scholar

[26]

P. Martinez, J. P. Raymond and J. Vancostenoble, Regional null controllability of a linearized Crocco-type equation,, SIAM J. Control Optim., 42 (2003), 709. doi: 10.1137/S0363012902403547. Google Scholar

[27]

G. Metafune and D. Pallara, Trace formulas for some singular differential operators and applications,, Math. Nachr., 211 (2000), 127. Google Scholar

[28]

S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-space,, Port. Math. (N.S.), 58 (2001), 1. Google Scholar

[29]

S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line,, Trans. Amer. Math. Soc., 353 (2001), 1635. doi: 10.1090/S0002-9947-00-02665-9. Google Scholar

[30]

R. M. Mininni and S. Romanelli, Martingale estimating functions for Feller diffusion processes generated by degenerate elliptic operators,, J. Concr. Appl. Math., 1 (2003), 191. Google Scholar

[31]

D. L. Russell, Controllability and stabilizability theorems for linear partial differential equations: recent progress and open questions,, SIAM Rev., 20 (1978), 639. doi: 10.1137/1020095. Google Scholar

[32]

N. Shimakura, "Partial Differential Operators of Elliptic Type,", Translations of Mathematical Monographs, 99 (1992). Google Scholar

[33]

D. Tataru, Carleman estimates, unique continuation and controllability for anizotropic PDE's,, Contemp. Math., 209 (1997), 267. doi: 10.1090/conm/209/02771. Google Scholar

[1]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations & Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[2]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[3]

Piermarco Cannarsa, Genni Fragnelli, Dario Rocchetti. Null controllability of degenerate parabolic operators with drift. Networks & Heterogeneous Media, 2007, 2 (4) : 695-715. doi: 10.3934/nhm.2007.2.695

[4]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control & Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[5]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[6]

Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019031

[7]

Enrique Fernández-Cara, Luz de Teresa. Null controllability of a cascade system of parabolic-hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 699-714. doi: 10.3934/dcds.2004.11.699

[8]

Piermarco Cannarsa, Patrick Martinez, Judith Vancostenoble. Persistent regional null contrillability for a class of degenerate parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (4) : 607-635. doi: 10.3934/cpaa.2004.3.607

[9]

Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control & Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203

[10]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[11]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control & Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[12]

Morteza Fotouhi, Leila Salimi. Controllability results for a class of one dimensional degenerate/singular parabolic equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1415-1430. doi: 10.3934/cpaa.2013.12.1415

[13]

Enrique Fernández-Cara, Manuel González-Burgos, Luz de Teresa. Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 639-658. doi: 10.3934/cpaa.2006.5.639

[14]

Emmanuele DiBenedetto, Ugo Gianazza and Vincenzo Vespri. Intrinsic Harnack estimates for nonnegative local solutions of degenerate parabolic equations. Electronic Research Announcements, 2006, 12: 95-99.

[15]

Ait Ben Hassi El Mustapha, Fadili Mohamed, Maniar Lahcen. On Algebraic condition for null controllability of some coupled degenerate systems. Mathematical Control & Related Fields, 2019, 9 (1) : 77-95. doi: 10.3934/mcrf.2019004

[16]

Kim Dang Phung. Carleman commutator approach in logarithmic convexity for parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 899-933. doi: 10.3934/mcrf.2018040

[17]

Gary M. Lieberman. Schauder estimates for singular parabolic and elliptic equations of Keldysh type. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1525-1566. doi: 10.3934/dcdsb.2016010

[18]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[19]

Qi Lü, Enrique Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4183-4210. doi: 10.3934/dcds.2014.34.4183

[20]

Tariel Sanikidze, A.F. Tedeev. On the temporal decay estimates for the degenerate parabolic system. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1755-1768. doi: 10.3934/cpaa.2013.12.1755

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]