April  2013, 6(2): 517-546. doi: 10.3934/dcdss.2013.6.517

On a class of sixth order viscous Cahn-Hilliard type equations

1. 

System Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw

2. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warsaw

Received  July 2011 Revised  February 2012 Published  November 2012

An initial-boundary-value problem for a class of sixth order viscous Cahn-Hilliard type equations with a nonlinear diffusion is considered. The study is motivated by phase-field modelling of various spatial structures, for example arising in oil-water-surfactant mixtures and in modelling of crystal growth on atomic length, known as phase field crystal model. For such problem we prove the existence and uniqueness of a global in time regular solution. First the finite-time existence is proved by means of the Leray-Schauder fixed point theorem. Then, due to suitable estimates, the finite-time solution is extended step by step on the infinite time interval.
Citation: Irena Pawłow, Wojciech M. Zajączkowski. On a class of sixth order viscous Cahn-Hilliard type equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 517-546. doi: 10.3934/dcdss.2013.6.517
References:
[1]

J. Berry, K. R. Elder and M. Grant, Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation,, Phys. Rev. E, 77 (2008). doi: 10.1103/PhysRevE.77.061506. Google Scholar

[2]

J. Berry, M. Grant and K. R. Elder, Diffusive atomistic dynamics of edge dislocations in two dimensions,, Phys. Rev. E, 73 (2006). doi: 10.1103/PhysRevE.73.031609. Google Scholar

[3]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, "Integral Representation of Functions and Theorems of Imbeddings,", Nauka, (1975). Google Scholar

[4]

D. G. B. Edelen, On the existence of symmetry relations and dissipation potentials,, Arch. Ration. Mech. Anal., 51 (1973), 218. doi: 10.1007/BF00276075. Google Scholar

[5]

M. Efendiev and A. Miranville, New models of Cahn-Hilliard-Gurtin equations,, Continuum Mech. Thermodyn, 16 (2004), 441. doi: 10.1007/s00161-003-0169-6. Google Scholar

[6]

K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals,, Phys. Rev. E., 70 (2004). doi: 10.1103/PhysRevE.70.051605. Google Scholar

[7]

K. R. Elder, M. Katakowski, M. Haataja and M. Grant, Modeling elasticity in crystal growth,, Phys. Rev. Lett., 88 (2002). doi: 10.1103/PhysRevLett.88.245701. Google Scholar

[8]

P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.051110. Google Scholar

[9]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations,, Phys. Rev. E, 47 (1993), 4289. doi: 10.1103/PhysRevE.47.4289. Google Scholar

[10]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations,, Phys. Rev. E, 47 (1993), 4301. doi: 10.1103/PhysRevE.47.4301. Google Scholar

[11]

G. Gompper and S. Zschocke, Ginzburg-Landau theory of oil-water-surfactant mixtures,, Phys. Rev. A, 46 (1992), 4836. doi: 10.1103/PhysRevA.46.4836. Google Scholar

[12]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Phys. D, 92 (1996), 178. doi: 10.1016/0167-2789(95)00173-5. Google Scholar

[13]

M. D. Korzec, P. Nayar and P. Rybka, Global weak solutions to a sixth order Cahn-Hilliard type equation,, to appear, (2011). Google Scholar

[14]

M. D. Korzec and P. Rybka, On a higher order convective Cahn-Hilliard type equation,, to appear, (2011). Google Scholar

[15]

I. S. Liu, Method of Lagrange multipliers for exploitation of the entropy principle,, Arch. Rational Mech. Anal., 46 (1972), 131. doi: 10.1007/BF00250688. Google Scholar

[16]

I. Müller, "Thermodynamics,", Pitman, (1985). doi: 10.1097/00006534-198507000-00010. Google Scholar

[17]

I. Pawłow, Thermodynamically consistent Cahn-Hilliard and Allen-Cahn models in elastic solids,, Discrete Contin. Dyn. Syst., 15 (2006), 1169. doi: 10.3934/dcds.2006.15.1169. Google Scholar

[18]

I. Pawłow and W. M. Zajączkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures,, Commun. Pure Appl. Anal., 10 (2011), 1823. doi: 10.3934/cpaa.2011.10.1823. Google Scholar

[19]

T. V. Savina, A. A. Golovin, S. H. Davis, A. A. Nepomnyashchy and P. W. Voorhees, Faceting of a growing crystal surface by surface diffusion,, Phys. Rev. E, 67 (2003). doi: 10.1103/PhysRevE.67.021606. Google Scholar

[20]

G. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion,, to appear, (2011). Google Scholar

[21]

I. Singer-Loginova and H. M. Singer, The phase field technique for modeling multiphase materials,, Rep. Prog. Phys., 71 (2008). doi: 10.1088/0034-4885/71/10/106501. Google Scholar

[22]

V. A. Solonnikov, A priori estimates for solutions of second order parabolic equations,, Trudy Mat. Inst. Steklov, 70 (1964), 133. Google Scholar

[23]

V. A. Solonnikov, Boundary value problems for linear parabolic systems of differential equations of general type,, Trudy Mat. Inst. Steklov, 83 (1965), 1. Google Scholar

[24]

W. von Wahl, "The Equations of Navier-Stokes and Abstract Parabolic Equations,", Braunschweig, (1985). Google Scholar

show all references

References:
[1]

J. Berry, K. R. Elder and M. Grant, Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation,, Phys. Rev. E, 77 (2008). doi: 10.1103/PhysRevE.77.061506. Google Scholar

[2]

J. Berry, M. Grant and K. R. Elder, Diffusive atomistic dynamics of edge dislocations in two dimensions,, Phys. Rev. E, 73 (2006). doi: 10.1103/PhysRevE.73.031609. Google Scholar

[3]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, "Integral Representation of Functions and Theorems of Imbeddings,", Nauka, (1975). Google Scholar

[4]

D. G. B. Edelen, On the existence of symmetry relations and dissipation potentials,, Arch. Ration. Mech. Anal., 51 (1973), 218. doi: 10.1007/BF00276075. Google Scholar

[5]

M. Efendiev and A. Miranville, New models of Cahn-Hilliard-Gurtin equations,, Continuum Mech. Thermodyn, 16 (2004), 441. doi: 10.1007/s00161-003-0169-6. Google Scholar

[6]

K. R. Elder and M. Grant, Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals,, Phys. Rev. E., 70 (2004). doi: 10.1103/PhysRevE.70.051605. Google Scholar

[7]

K. R. Elder, M. Katakowski, M. Haataja and M. Grant, Modeling elasticity in crystal growth,, Phys. Rev. Lett., 88 (2002). doi: 10.1103/PhysRevLett.88.245701. Google Scholar

[8]

P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.051110. Google Scholar

[9]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations,, Phys. Rev. E, 47 (1993), 4289. doi: 10.1103/PhysRevE.47.4289. Google Scholar

[10]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations,, Phys. Rev. E, 47 (1993), 4301. doi: 10.1103/PhysRevE.47.4301. Google Scholar

[11]

G. Gompper and S. Zschocke, Ginzburg-Landau theory of oil-water-surfactant mixtures,, Phys. Rev. A, 46 (1992), 4836. doi: 10.1103/PhysRevA.46.4836. Google Scholar

[12]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Phys. D, 92 (1996), 178. doi: 10.1016/0167-2789(95)00173-5. Google Scholar

[13]

M. D. Korzec, P. Nayar and P. Rybka, Global weak solutions to a sixth order Cahn-Hilliard type equation,, to appear, (2011). Google Scholar

[14]

M. D. Korzec and P. Rybka, On a higher order convective Cahn-Hilliard type equation,, to appear, (2011). Google Scholar

[15]

I. S. Liu, Method of Lagrange multipliers for exploitation of the entropy principle,, Arch. Rational Mech. Anal., 46 (1972), 131. doi: 10.1007/BF00250688. Google Scholar

[16]

I. Müller, "Thermodynamics,", Pitman, (1985). doi: 10.1097/00006534-198507000-00010. Google Scholar

[17]

I. Pawłow, Thermodynamically consistent Cahn-Hilliard and Allen-Cahn models in elastic solids,, Discrete Contin. Dyn. Syst., 15 (2006), 1169. doi: 10.3934/dcds.2006.15.1169. Google Scholar

[18]

I. Pawłow and W. M. Zajączkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures,, Commun. Pure Appl. Anal., 10 (2011), 1823. doi: 10.3934/cpaa.2011.10.1823. Google Scholar

[19]

T. V. Savina, A. A. Golovin, S. H. Davis, A. A. Nepomnyashchy and P. W. Voorhees, Faceting of a growing crystal surface by surface diffusion,, Phys. Rev. E, 67 (2003). doi: 10.1103/PhysRevE.67.021606. Google Scholar

[20]

G. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion,, to appear, (2011). Google Scholar

[21]

I. Singer-Loginova and H. M. Singer, The phase field technique for modeling multiphase materials,, Rep. Prog. Phys., 71 (2008). doi: 10.1088/0034-4885/71/10/106501. Google Scholar

[22]

V. A. Solonnikov, A priori estimates for solutions of second order parabolic equations,, Trudy Mat. Inst. Steklov, 70 (1964), 133. Google Scholar

[23]

V. A. Solonnikov, Boundary value problems for linear parabolic systems of differential equations of general type,, Trudy Mat. Inst. Steklov, 83 (1965), 1. Google Scholar

[24]

W. von Wahl, "The Equations of Navier-Stokes and Abstract Parabolic Equations,", Braunschweig, (1985). Google Scholar

[1]

Irena Pawłow, Wojciech M. Zajączkowski. A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1823-1847. doi: 10.3934/cpaa.2011.10.1823

[2]

Irena Pawłow, Wojciech M. Zajączkowski. The global solvability of a sixth order Cahn-Hilliard type equation via the Bäcklund transformation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 859-880. doi: 10.3934/cpaa.2014.13.859

[3]

Aibo Liu, Changchun Liu. Cauchy problem for a sixth order Cahn-Hilliard type equation with inertial term. Evolution Equations & Control Theory, 2015, 4 (3) : 315-324. doi: 10.3934/eect.2015.4.315

[4]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[5]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[6]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[7]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[8]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[9]

Irena Pawłow, Wojciech M. Zajączkowski. Regular weak solutions to 3-D Cahn-Hilliard system in elastic solids. Conference Publications, 2007, 2007 (Special) : 824-833. doi: 10.3934/proc.2007.2007.824

[10]

Cecilia Cavaterra, Maurizio Grasselli, Hao Wu. Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1855-1890. doi: 10.3934/cpaa.2014.13.1855

[11]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[12]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[13]

Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027

[14]

Pablo Álvarez-Caudevilla. Existence and multiplicity of stationary solutions for a Cahn--Hilliard-type equation in $\mathbb{R}^N$. Conference Publications, 2015, 2015 (special) : 10-18. doi: 10.3934/proc.2015.0010

[15]

Riccarda Rossi. On two classes of generalized viscous Cahn-Hilliard equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 405-430. doi: 10.3934/cpaa.2005.4.405

[16]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[17]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[18]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. Stationary solutions to the one-dimensional Cahn-Hilliard equation: Proof by the complete elliptic integrals. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 609-629. doi: 10.3934/dcds.2007.19.609

[19]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[20]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]