April  2013, 6(2): 501-515. doi: 10.3934/dcdss.2013.6.501

Estimating area of inclusions in anisotropic plates from boundary data

1. 

Dipartimento di Ingegneria Civile e Architettura, Università degli Studi di Udine, via Cotonificio 114, 33100 Udine

2. 

Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, via Valerio 12/1, 34127 Trieste, Italy

3. 

DIMAD, Università degli Studi di Firenze, via Lombroso 6/17, 50134 Firenze

Received  October 2011 Revised  November 2011 Published  November 2012

We consider the inverse problem of determining the possible presence of an inclusion in a thin plate by boundary measurements. The plate is made by non-homogeneous linearly elastic material belonging to a general class of anisotropy. The inclusion is made by different elastic material. Under some a priori assumptions on the unknown inclusion, we prove constructive upper and lower estimates of the area of the unknown defect in terms of an easily expressed quantity related to work, which is given in terms of measurements of a couple field applied at the boundary and of the induced transversal displacement and its normal derivative taken at the boundary of the plate.
Citation: Antonino Morassi, Edi Rosset, Sergio Vessella. Estimating area of inclusions in anisotropic plates from boundary data. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 501-515. doi: 10.3934/dcdss.2013.6.501
References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1975). Google Scholar

[2]

G. Alessandrini, A. Morassi and E. Rosset, Size estimates,, in, 333 (2003), 33. Google Scholar

[3]

G. Alessandrini, A. Morassi and E. Rosset, Detecting an inclusion in an elastic body by boundary measurements,, SIAM Rev., 46 (2004), 477. doi: 10.1137/S0036144504442098. Google Scholar

[4]

G. Alessandrini, A. Morassi, E. Rosset and S. Vessella, On doubling inequalities for elliptic systems,, J. Math. Anal. Appl., 357 (2009), 349. doi: 10.1016/j.jmaa.2009.04.024. Google Scholar

[5]

G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: bounds on the size of the unknown object,, SIAM J. Appl. Math., 58 (1998), 1060. doi: 10.1137/S0036139996306468. Google Scholar

[6]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations,, Inverse Problems, 25 (2009), 1. doi: 10.1088/0266-5611/25/12/123004. Google Scholar

[7]

G. Alessandrini, E. Rosset and J. K. Seo, Optimal size estimates for the inverse conductivity problem with one measurement,, Proc. Amer. Math. Soc., 128 (2000), 53. doi: 10.1090/S0002-9939-99-05474-X. Google Scholar

[8]

S. Alinhac, Non-unicité pour des opérateurs différentiels à la caractéristiques complexes simples,, Ann. Sci. École Norm. Sup., 13 (1980), 385. Google Scholar

[9]

M. Di Cristo, C. L. Lin and J. N. Wang, Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem,, preprint (2011)., (2011). Google Scholar

[10]

G. Fichera, Existence theorems in elasticity,, in, VI (1972), 347. Google Scholar

[11]

M. E. Gurtin, The linear theory of elasticity,, in, VI (1972), 1. Google Scholar

[12]

M. Ikehata, Size estimation of inclusion,, J. Inverse Ill-Posed Probl., 6 (1998), 127. Google Scholar

[13]

H. Kang, J. K. Seo and D. Sheen, The inverse conductivity problem with one measurement: stability and estimation of size,, SIAM J. Math. Anal., 28 (1997), 1389. doi: 10.1137/S0036141096299375. Google Scholar

[14]

Y. Lei, M. Di Cristo and G. Nakamura, Size estimates in thermography,, Appl. Anal., 88 (2009), 831. doi: 10.1080/00036810903042133. Google Scholar

[15]

A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies,, Inverse Problems, 20 (2004), 453. doi: 10.1088/0266-5611/20/2/010. Google Scholar

[16]

A. Morassi, E. Rosset and S. Vessella, Size estimates for inclusions in an elastic plate by boundary measurements,, Indiana Univ. Math. J., 56 (2007), 2325. doi: 10.1512/iumj.2007.56.2975. Google Scholar

[17]

A. Morassi, E. Rosset and S. Vessella, Detecting general inclusions in elastic plates,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/4/045009. Google Scholar

[18]

A. Morassi, E. Rosset and S. Vessella, Stable determination of a rigid inclusion in an anisotropic plate,, preprint (2011), (2011). Google Scholar

[19]

A. Morassi, E. Rosset and S. Vessella, Sharp three sphere inequality for perturbations of a product of two second order elliptic operators and stability for the Cauchy problem for the anisotropic plate equation,, J. Funct. Anal., 261 (2011), 1494. doi: 10.1016/j.jfa.2011.05.011. Google Scholar

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1975). Google Scholar

[2]

G. Alessandrini, A. Morassi and E. Rosset, Size estimates,, in, 333 (2003), 33. Google Scholar

[3]

G. Alessandrini, A. Morassi and E. Rosset, Detecting an inclusion in an elastic body by boundary measurements,, SIAM Rev., 46 (2004), 477. doi: 10.1137/S0036144504442098. Google Scholar

[4]

G. Alessandrini, A. Morassi, E. Rosset and S. Vessella, On doubling inequalities for elliptic systems,, J. Math. Anal. Appl., 357 (2009), 349. doi: 10.1016/j.jmaa.2009.04.024. Google Scholar

[5]

G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: bounds on the size of the unknown object,, SIAM J. Appl. Math., 58 (1998), 1060. doi: 10.1137/S0036139996306468. Google Scholar

[6]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations,, Inverse Problems, 25 (2009), 1. doi: 10.1088/0266-5611/25/12/123004. Google Scholar

[7]

G. Alessandrini, E. Rosset and J. K. Seo, Optimal size estimates for the inverse conductivity problem with one measurement,, Proc. Amer. Math. Soc., 128 (2000), 53. doi: 10.1090/S0002-9939-99-05474-X. Google Scholar

[8]

S. Alinhac, Non-unicité pour des opérateurs différentiels à la caractéristiques complexes simples,, Ann. Sci. École Norm. Sup., 13 (1980), 385. Google Scholar

[9]

M. Di Cristo, C. L. Lin and J. N. Wang, Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem,, preprint (2011)., (2011). Google Scholar

[10]

G. Fichera, Existence theorems in elasticity,, in, VI (1972), 347. Google Scholar

[11]

M. E. Gurtin, The linear theory of elasticity,, in, VI (1972), 1. Google Scholar

[12]

M. Ikehata, Size estimation of inclusion,, J. Inverse Ill-Posed Probl., 6 (1998), 127. Google Scholar

[13]

H. Kang, J. K. Seo and D. Sheen, The inverse conductivity problem with one measurement: stability and estimation of size,, SIAM J. Math. Anal., 28 (1997), 1389. doi: 10.1137/S0036141096299375. Google Scholar

[14]

Y. Lei, M. Di Cristo and G. Nakamura, Size estimates in thermography,, Appl. Anal., 88 (2009), 831. doi: 10.1080/00036810903042133. Google Scholar

[15]

A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies,, Inverse Problems, 20 (2004), 453. doi: 10.1088/0266-5611/20/2/010. Google Scholar

[16]

A. Morassi, E. Rosset and S. Vessella, Size estimates for inclusions in an elastic plate by boundary measurements,, Indiana Univ. Math. J., 56 (2007), 2325. doi: 10.1512/iumj.2007.56.2975. Google Scholar

[17]

A. Morassi, E. Rosset and S. Vessella, Detecting general inclusions in elastic plates,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/4/045009. Google Scholar

[18]

A. Morassi, E. Rosset and S. Vessella, Stable determination of a rigid inclusion in an anisotropic plate,, preprint (2011), (2011). Google Scholar

[19]

A. Morassi, E. Rosset and S. Vessella, Sharp three sphere inequality for perturbations of a product of two second order elliptic operators and stability for the Cauchy problem for the anisotropic plate equation,, J. Funct. Anal., 261 (2011), 1494. doi: 10.1016/j.jfa.2011.05.011. Google Scholar

[1]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

[2]

Peijun Li, Xiaokai Yuan. Inverse obstacle scattering for elastic waves in three dimensions. Inverse Problems & Imaging, 2019, 13 (3) : 545-573. doi: 10.3934/ipi.2019026

[3]

Peng Gao. Carleman estimates and Unique Continuation Property for 1-D viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 169-188. doi: 10.3934/dcds.2017007

[4]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[5]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control & Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[6]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control & Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[7]

Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control & Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165

[8]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[9]

Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems & Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309

[10]

Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047

[11]

Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172

[12]

Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2379-2407. doi: 10.3934/dcdsb.2016052

[13]

Michael Anderson, Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas and Michael Taylor. Metric tensor estimates, geometric convergence, and inverse boundary problems. Electronic Research Announcements, 2003, 9: 69-79.

[14]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[15]

Nuno F. M. Martins. Detecting the localization of elastic inclusions and Lamé coefficients. Inverse Problems & Imaging, 2014, 8 (3) : 779-794. doi: 10.3934/ipi.2014.8.779

[16]

Elena Beretta, Eric Bonnetier, Elisa Francini, Anna L. Mazzucato. Small volume asymptotics for anisotropic elastic inclusions. Inverse Problems & Imaging, 2012, 6 (1) : 1-23. doi: 10.3934/ipi.2012.6.1

[17]

Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems & Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103

[18]

Marta Lewicka, Hui Li. Convergence of equilibria for incompressible elastic plates in the von Kármán regime. Communications on Pure & Applied Analysis, 2015, 14 (1) : 143-166. doi: 10.3934/cpaa.2015.14.143

[19]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[20]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]