April  2013, 6(2): 277-291. doi: 10.3934/dcdss.2013.6.277

A new "flexible" 3D macroscopic model for shape memory alloys

1. 

Dipartimento di Meccanica Strutturale, Università di Pavia, via Ferrata 1, 27100 Pavia, Italy

2. 

Dipartimento di Matematica, Università di Pavia, via Ferrata 1, 27100 Pavia

Received  November 2011 Revised  January 2012 Published  November 2012

In this paper we introduce a 3D phenomenological model for shape memory behavior, accounting for: martensite reorientation, asymmetric response of the material to tension/compression, different kinetics between forward and reverse phase transformation. We combine two modeling approaches using scalar and tensorial internal variables. Indeed, we use volume proportions of different configurations of the crystal lattice (austenite and two variants of martensite) as scalar internal variables and the preferred direction of stress-induced martensite as tensorial internal variable. Then, we derive evolution equations by a generalization of the principle of virtual powers, including microforces and micromovements responsible for phase transformations. In addition, we prescribe an evolution law for phase proportions ensuring different kinetics during forward and reverse transformation of the oriented martensite.
Citation: Ferdinando Auricchio, Elena Bonetti. A new "flexible" 3D macroscopic model for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 277-291. doi: 10.3934/dcdss.2013.6.277
References:
[1]

J. Arghavani, F. Auricchio, R. Naghdabadi, A. Reali and S. Sohrabpour, A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings,, International Journal of Plasticity, 26 (2010), 976. doi: 10.1016/j.ijplas.2009.12.003. Google Scholar

[2]

F. Auricchio and L. Petrini, A three-dimensional models describing stress-temperature induced solid phase transformations. part I: Solution, algorithm and boundary value problems,, International Journal of Numerical Methods in Engineering, 6 (2004), 807. Google Scholar

[3]

F. Auricchio, A. Reali and U. Stefanelli, A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties,, Computer Methods in Applied Mechanics and Engineering, 198 (2009), 1631. doi: 10.1016/j.cma.2009.01.019. Google Scholar

[4]

E. Bonetti, Global solvability of a dissipative Frémond model for shape memory alloys. I. Mathematical formulation and uniqueness,, Quart. Appl. Math., 61 (2003), 759. Google Scholar

[5]

E. Bonetti, M. Frémond and Ch. Lexcellent, Global existence and uniqueness for a thermomechanical model for shape memory alloys with partition of the strain,, Math. Mech. Solids, 11 (2006), 251. doi: 10.1177/1081286506040403. Google Scholar

[6]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert,", Number 5 in North Holland Math. Studies. North-Holland, (1973). Google Scholar

[7]

M. Frémond, "Non-Smooth Thermomechanics,", Springer-Verlag, (2002). Google Scholar

[8]

J. Lubliner, "Plasticity Theory,", Macmillan, (1990). Google Scholar

[9]

J. J. Moreau, "Fonctionelles Convexes,", Universià di Roma Tor Vergata Pub., (2003). Google Scholar

[10]

A. C. Souza, E. N. Mamiya and N. Zouain, Three-dimensional model for solids undergoing stress-induced phase transformations,, European Journal of Mechanics, 17 (1998), 789. doi: 10.1016/S0997-7538(98)80005-3. Google Scholar

show all references

References:
[1]

J. Arghavani, F. Auricchio, R. Naghdabadi, A. Reali and S. Sohrabpour, A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings,, International Journal of Plasticity, 26 (2010), 976. doi: 10.1016/j.ijplas.2009.12.003. Google Scholar

[2]

F. Auricchio and L. Petrini, A three-dimensional models describing stress-temperature induced solid phase transformations. part I: Solution, algorithm and boundary value problems,, International Journal of Numerical Methods in Engineering, 6 (2004), 807. Google Scholar

[3]

F. Auricchio, A. Reali and U. Stefanelli, A macroscopic 1D model for shape memory alloys including asymmetric behaviors and transformation-dependent elastic properties,, Computer Methods in Applied Mechanics and Engineering, 198 (2009), 1631. doi: 10.1016/j.cma.2009.01.019. Google Scholar

[4]

E. Bonetti, Global solvability of a dissipative Frémond model for shape memory alloys. I. Mathematical formulation and uniqueness,, Quart. Appl. Math., 61 (2003), 759. Google Scholar

[5]

E. Bonetti, M. Frémond and Ch. Lexcellent, Global existence and uniqueness for a thermomechanical model for shape memory alloys with partition of the strain,, Math. Mech. Solids, 11 (2006), 251. doi: 10.1177/1081286506040403. Google Scholar

[6]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert,", Number 5 in North Holland Math. Studies. North-Holland, (1973). Google Scholar

[7]

M. Frémond, "Non-Smooth Thermomechanics,", Springer-Verlag, (2002). Google Scholar

[8]

J. Lubliner, "Plasticity Theory,", Macmillan, (1990). Google Scholar

[9]

J. J. Moreau, "Fonctionelles Convexes,", Universià di Roma Tor Vergata Pub., (2003). Google Scholar

[10]

A. C. Souza, E. N. Mamiya and N. Zouain, Three-dimensional model for solids undergoing stress-induced phase transformations,, European Journal of Mechanics, 17 (1998), 789. doi: 10.1016/S0997-7538(98)80005-3. Google Scholar

[1]

Tomáš Roubíček. Modelling of thermodynamics of martensitic transformation in shape-memory alloys. Conference Publications, 2007, 2007 (Special) : 892-902. doi: 10.3934/proc.2007.2007.892

[2]

Nikolaos Bournaveas, Vincent Calvez. Global existence for the kinetic chemotaxis model without pointwise memory effects, and including internal variables. Kinetic & Related Models, 2008, 1 (1) : 29-48. doi: 10.3934/krm.2008.1.29

[3]

Michel Frémond, Elisabetta Rocca. A model for shape memory alloys with the possibility of voids. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1633-1659. doi: 10.3934/dcds.2010.27.1633

[4]

Toyohiko Aiki. The position of the joint of shape memory alloy and bias springs. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 239-246. doi: 10.3934/dcdss.2011.4.239

[5]

Evgeny L. Korotyaev. Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 219-225. doi: 10.3934/dcds.2011.30.219

[6]

Diego Grandi, Ulisse Stefanelli. The Souza-Auricchio model for shape-memory alloys. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 723-747. doi: 10.3934/dcdss.2015.8.723

[7]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. Thermal control of the Souza-Auricchio model for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 369-386. doi: 10.3934/dcdss.2013.6.369

[8]

Linxiang Wang, Roderick Melnik. Dynamics of shape memory alloys patches with mechanically induced transformations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1237-1252. doi: 10.3934/dcds.2006.15.1237

[9]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145

[10]

Shuji Yoshikawa, Irena Pawłow, Wojciech M. Zajączkowski. A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1093-1115. doi: 10.3934/cpaa.2009.8.1093

[11]

Alessia Berti, Claudio Giorgi, Elena Vuk. Free energies and pseudo-elastic transitions for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 293-316. doi: 10.3934/dcdss.2013.6.293

[12]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[13]

Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949

[14]

Paolo Perfetti. Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 379-391. doi: 10.3934/dcds.1998.4.379

[15]

Toyohiko Aiki, Martijn Anthonissen, Adrian Muntean. On a one-dimensional shape-memory alloy model in its fast-temperature-activation limit. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 15-28. doi: 10.3934/dcdss.2012.5.15

[16]

Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 1-13. doi: 10.3934/dcdss.2012.5.1

[17]

Takashi Suzuki, Shuji Yoshikawa. Stability of the steady state for multi-dimensional thermoelastic systems of shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 209-217. doi: 10.3934/dcdss.2012.5.209

[18]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

[19]

Ken Shirakawa. Asymptotic stability for dynamical systems associated with the one-dimensional Frémond model of shape memory alloys. Conference Publications, 2003, 2003 (Special) : 798-808. doi: 10.3934/proc.2003.2003.798

[20]

Sergiu Aizicovici, Hana Petzeltová. Convergence to equilibria of solutions to a conserved Phase-Field system with memory. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 1-16. doi: 10.3934/dcdss.2009.2.1

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]