December  2013, 6(6): 1569-1586. doi: 10.3934/dcdss.2013.6.1569

Modeling a hard, thin curvilinear interface

1. 

LMA, CNRS UPR 7051, Aix-Marseille University, Centrale Marseille, F 13402 Marseille Cedex 20, France

2. 

Dipartimento di Ingegneria, Universitá di Ferrara, I 44122 Ferrara, Italy

Received  June 2012 Revised  September 2012 Published  April 2013

In this paper, some results obtained on the asymptotic behavior of hard, thin curvilinear interfaces i.e., in cases where the interphase and adherents have comparable rigidities, are presented. The case of hard interfaces is investigated in terms of cylindrical coordinates and some analytical examples are presented.
Citation: Frédéric Lebon, Raffaella Rizzoni. Modeling a hard, thin curvilinear interface. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1569-1586. doi: 10.3934/dcdss.2013.6.1569
References:
[1]

F. Ascione and G. Mancusi, Curve adhesive joints,, Composite Structures, 94 (2012), 2657. doi: 10.1016/j.compstruct.2012.03.024. Google Scholar

[2]

Y. Benveniste, A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media,, Journal of the Mechanics and Physics of Solids, 54 (2006), 708. doi: 10.1016/j.jmps.2005.10.009. Google Scholar

[3]

Y. Benveniste and T. Miloh, Imperfect soft and stiff interfaces in two-dimensional elasticity,, Mechanics of Materials, 33 (2001), 309. doi: 10.1016/S0167-6636(01)00055-2. Google Scholar

[4]

K. Bertoldi, D. Bigoni and W. Drugan, Structural interfaces in linear elasticity. Part I. Nonlocality and gradient approximations,, Journal of the Mechanics and Physics of Solids, 55 (2007), 1. doi: 10.1016/j.jmps.2006.06.004. Google Scholar

[5]

K. Bertoldi, D. Bigoni and W. Drugan, Structural interfaces in linear elasticity. Part II. Effective properties and neutrality,, Journal of the Mechanics and Physics of Solids, 55 (2007), 35. doi: 10.1016/j.jmps.2006.06.005. Google Scholar

[6]

D. Bigoni and A. Movchan, Statics and dynamics of structural interfaces in elasticity,, International Journal of Solids and Structures, 39 (2002), 4843. doi: 10.1016/S0020-7683(02)00416-X. Google Scholar

[7]

N. Challamel and U. A. Girhammar, Boundary-layer effect in composite beams with interlayer slip,, Journal of Aerospace Engineering, 24 (2011), 199. doi: 10.1061/(ASCE)AS.1943-5525.0000027. Google Scholar

[8]

J. Cognard, R. C. Hcadec, L. Sohier and P. Davies, Analysis of the nonlinear behavior of adhesives in 2 bonded assemblies - comparison of tast and arcan tests,, International Journal of Adhesion and Adhesives, 28 (2008), 393. Google Scholar

[9]

J. Cognard, P. Davies, L. Sohier and R. Créac'hcadec, A study of the non-linear behaviour of adhesively-bonded composite assemblies,, Composite Structures, 76 (2006), 34. doi: 10.1016/j.compstruct.2006.06.006. Google Scholar

[10]

I. Doghri, "Mechanics of Deformable Solids. Linear, Nonlinear, Analytical and Computational Aspects,", Springer-Verlag, (2000). Google Scholar

[11]

V. A. Duong, A. D. Diaz, S. Chataigner and J.-F. Caron, A layerwise finite element for multilayers with imperfect interfaces,, Composite Structures, 93 (2011), 3262. doi: 10.1016/j.compstruct.2011.05.001. Google Scholar

[12]

W. Eckhaus, "Asymptotic Analysis of Singular Perturbations,", Studies in Mathematics and its Applications, 9 (1979). Google Scholar

[13]

S. Kumar and J. P. Scanlan, Stress analysis of shaft-tube bonded joints using a variational method,, Journal of Adhesion, 86 (2010), 369. doi: 10.1080/00218461003704329. Google Scholar

[14]

M. Kumar and Parul, Methods for solving singular perturbation problems arising in science and engineering,, Mathematical and Computer Modelling, 54 (2011), 556. doi: 10.1016/j.mcm.2011.02.045. Google Scholar

[15]

F. Lebon and R. Rizzoni, Asymptotic analysis of a thin interface: The case involving similar rigidity,, International Journal of Engineering Science, 48 (2010), 473. doi: 10.1016/j.ijengsci.2009.12.001. Google Scholar

[16]

F. Lebon and R. Rizzoni, Asymptotic behavior of a hard thin linear elastic interphase: An energy approach,, International Journal of Solids and Structures, 48 (2011), 441. doi: 10.1016/j.ijsolstr.2010.10.006. Google Scholar

[17]

F. Lebon and R. Rizzoni, Asymptotic analysis of an adhesive joint with mismatch strain,, European Journal of Mechanics, 36 (2012), 1. doi: 10.1016/j.euromechsol.2012.02.005. Google Scholar

[18]

F. Lebon, R. Rizzoni and S. Ronel-Idrissi, Numerical analysis of two non-linear soft thin layers,, Lecture Notes in Applied and Computational Mechanics, 61 (2012), 299. doi: 10.1007/978-3-642-24638-8_20. Google Scholar

[19]

F. Lebon and S. Ronel, First order numerical analysis of linear thin layers,, Journal of Applied Mechanics, 74 (2007), 824. doi: 10.1115/1.2424716. Google Scholar

[20]

C. Licht, A. Léger and F. Lebon, Dynamics of elastic bodies connected by a thin adhesive layer,, in, 128 (2009), 99. doi: 10.1007/978-3-540-89105-5_9. Google Scholar

[21]

C. Licht and G. Michaille, A modelling of elastic adhesive bonded joints,, Advances in Mathematical Sciences and Applications, 7 (1997), 711. Google Scholar

[22]

R. Rizzoni and F. Lebon, Asymptotic analysis of an adhesive joint with mismatch strain,, European Journal of Mechanics, 36 (2012), 1. doi: 10.1016/j.euromechsol.2012.02.005. Google Scholar

[23]

F. Zaittouni, F. Lebon and C. Licht, Theoretical and numerical study of the behaviour of bonded plates,, [Etude théorique et numérique du comportement d'un assemblage de plaques], 330 (2002), 359. Google Scholar

show all references

References:
[1]

F. Ascione and G. Mancusi, Curve adhesive joints,, Composite Structures, 94 (2012), 2657. doi: 10.1016/j.compstruct.2012.03.024. Google Scholar

[2]

Y. Benveniste, A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media,, Journal of the Mechanics and Physics of Solids, 54 (2006), 708. doi: 10.1016/j.jmps.2005.10.009. Google Scholar

[3]

Y. Benveniste and T. Miloh, Imperfect soft and stiff interfaces in two-dimensional elasticity,, Mechanics of Materials, 33 (2001), 309. doi: 10.1016/S0167-6636(01)00055-2. Google Scholar

[4]

K. Bertoldi, D. Bigoni and W. Drugan, Structural interfaces in linear elasticity. Part I. Nonlocality and gradient approximations,, Journal of the Mechanics and Physics of Solids, 55 (2007), 1. doi: 10.1016/j.jmps.2006.06.004. Google Scholar

[5]

K. Bertoldi, D. Bigoni and W. Drugan, Structural interfaces in linear elasticity. Part II. Effective properties and neutrality,, Journal of the Mechanics and Physics of Solids, 55 (2007), 35. doi: 10.1016/j.jmps.2006.06.005. Google Scholar

[6]

D. Bigoni and A. Movchan, Statics and dynamics of structural interfaces in elasticity,, International Journal of Solids and Structures, 39 (2002), 4843. doi: 10.1016/S0020-7683(02)00416-X. Google Scholar

[7]

N. Challamel and U. A. Girhammar, Boundary-layer effect in composite beams with interlayer slip,, Journal of Aerospace Engineering, 24 (2011), 199. doi: 10.1061/(ASCE)AS.1943-5525.0000027. Google Scholar

[8]

J. Cognard, R. C. Hcadec, L. Sohier and P. Davies, Analysis of the nonlinear behavior of adhesives in 2 bonded assemblies - comparison of tast and arcan tests,, International Journal of Adhesion and Adhesives, 28 (2008), 393. Google Scholar

[9]

J. Cognard, P. Davies, L. Sohier and R. Créac'hcadec, A study of the non-linear behaviour of adhesively-bonded composite assemblies,, Composite Structures, 76 (2006), 34. doi: 10.1016/j.compstruct.2006.06.006. Google Scholar

[10]

I. Doghri, "Mechanics of Deformable Solids. Linear, Nonlinear, Analytical and Computational Aspects,", Springer-Verlag, (2000). Google Scholar

[11]

V. A. Duong, A. D. Diaz, S. Chataigner and J.-F. Caron, A layerwise finite element for multilayers with imperfect interfaces,, Composite Structures, 93 (2011), 3262. doi: 10.1016/j.compstruct.2011.05.001. Google Scholar

[12]

W. Eckhaus, "Asymptotic Analysis of Singular Perturbations,", Studies in Mathematics and its Applications, 9 (1979). Google Scholar

[13]

S. Kumar and J. P. Scanlan, Stress analysis of shaft-tube bonded joints using a variational method,, Journal of Adhesion, 86 (2010), 369. doi: 10.1080/00218461003704329. Google Scholar

[14]

M. Kumar and Parul, Methods for solving singular perturbation problems arising in science and engineering,, Mathematical and Computer Modelling, 54 (2011), 556. doi: 10.1016/j.mcm.2011.02.045. Google Scholar

[15]

F. Lebon and R. Rizzoni, Asymptotic analysis of a thin interface: The case involving similar rigidity,, International Journal of Engineering Science, 48 (2010), 473. doi: 10.1016/j.ijengsci.2009.12.001. Google Scholar

[16]

F. Lebon and R. Rizzoni, Asymptotic behavior of a hard thin linear elastic interphase: An energy approach,, International Journal of Solids and Structures, 48 (2011), 441. doi: 10.1016/j.ijsolstr.2010.10.006. Google Scholar

[17]

F. Lebon and R. Rizzoni, Asymptotic analysis of an adhesive joint with mismatch strain,, European Journal of Mechanics, 36 (2012), 1. doi: 10.1016/j.euromechsol.2012.02.005. Google Scholar

[18]

F. Lebon, R. Rizzoni and S. Ronel-Idrissi, Numerical analysis of two non-linear soft thin layers,, Lecture Notes in Applied and Computational Mechanics, 61 (2012), 299. doi: 10.1007/978-3-642-24638-8_20. Google Scholar

[19]

F. Lebon and S. Ronel, First order numerical analysis of linear thin layers,, Journal of Applied Mechanics, 74 (2007), 824. doi: 10.1115/1.2424716. Google Scholar

[20]

C. Licht, A. Léger and F. Lebon, Dynamics of elastic bodies connected by a thin adhesive layer,, in, 128 (2009), 99. doi: 10.1007/978-3-540-89105-5_9. Google Scholar

[21]

C. Licht and G. Michaille, A modelling of elastic adhesive bonded joints,, Advances in Mathematical Sciences and Applications, 7 (1997), 711. Google Scholar

[22]

R. Rizzoni and F. Lebon, Asymptotic analysis of an adhesive joint with mismatch strain,, European Journal of Mechanics, 36 (2012), 1. doi: 10.1016/j.euromechsol.2012.02.005. Google Scholar

[23]

F. Zaittouni, F. Lebon and C. Licht, Theoretical and numerical study of the behaviour of bonded plates,, [Etude théorique et numérique du comportement d'un assemblage de plaques], 330 (2002), 359. Google Scholar

[1]

Sara Monsurrò, Carmen Perugia. Homogenization and exact controllability for problems with imperfect interface. Networks & Heterogeneous Media, 2019, 14 (2) : 411-444. doi: 10.3934/nhm.2019017

[2]

Qiang Du, Jingyan Zhang. Asymptotic analysis of a diffuse interface relaxation to a nonlocal optimal partition problem. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1443-1461. doi: 10.3934/dcds.2011.29.1443

[3]

Luisa Faella, Carmen Perugia. Optimal control for a hyperbolic problem in composites with imperfect interface: A memory effect. Evolution Equations & Control Theory, 2017, 6 (2) : 187-217. doi: 10.3934/eect.2017011

[4]

S. E. Pastukhova. Asymptotic analysis in elasticity problems on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (3) : 577-604. doi: 10.3934/nhm.2009.4.577

[5]

Tien-Tsan Shieh. From gradient theory of phase transition to a generalized minimal interface problem with a contact energy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2729-2755. doi: 10.3934/dcds.2016.36.2729

[6]

Michael Stiassnie, Raphael Stuhlmeier. Progressive waves on a blunt interface. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3171-3182. doi: 10.3934/dcds.2014.34.3171

[7]

Ben A. Vanderlei, Matthew M. Hopkins, Lisa J. Fauci. Error estimation for immersed interface solutions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1185-1203. doi: 10.3934/dcdsb.2012.17.1185

[8]

Gung-Min Gie, Makram Hamouda, Roger Temam. Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks & Heterogeneous Media, 2012, 7 (4) : 741-766. doi: 10.3934/nhm.2012.7.741

[9]

Antonio DeSimone, Martin Kružík. Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks & Heterogeneous Media, 2013, 8 (2) : 481-499. doi: 10.3934/nhm.2013.8.481

[10]

Champike Attanayake, So-Hsiang Chou. An immersed interface method for Pennes bioheat transfer equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 323-337. doi: 10.3934/dcdsb.2015.20.323

[11]

Zhongyi Huang. Tailored finite point method for the interface problem. Networks & Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91

[12]

Jian Hao, Zhilin Li, Sharon R. Lubkin. An augmented immersed interface method for moving structures with mass. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1175-1184. doi: 10.3934/dcdsb.2012.17.1175

[13]

Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373

[14]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[15]

Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation. Communications on Pure & Applied Analysis, 2012, 11 (1) : 1-18. doi: 10.3934/cpaa.2012.11.1

[16]

Giada Basile, Tomasz Komorowski, Stefano Olla. Diffusion limit for a kinetic equation with a thermostatted interface. Kinetic & Related Models, 2019, 12 (5) : 1185-1196. doi: 10.3934/krm.2019045

[17]

Yuri Trakhinin. On well-posedness of the plasma-vacuum interface problem: the case of non-elliptic interface symbol. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1371-1399. doi: 10.3934/cpaa.2016.15.1371

[18]

Markus Gahn, Maria Neuss-Radu, Peter Knabner. Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface. Networks & Heterogeneous Media, 2018, 13 (4) : 609-640. doi: 10.3934/nhm.2018028

[19]

Eric Blayo, Antoine Rousseau. About interface conditions for coupling hydrostatic and nonhydrostatic Navier-Stokes flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1565-1574. doi: 10.3934/dcdss.2016063

[20]

Jianguo Huang, Jun Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 145-170. doi: 10.3934/dcdsb.2007.7.145

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]