• Previous Article
    On Prandtl's turbulence model: Existence of weak solutions to the equations of stationary turbulent pipe-flow
  • DCDS-S Home
  • This Issue
  • Next Article
    Improvement of some anisotropic regularity criteria for the Navier--Stokes equations
October  2013, 6(5): 1391-1400. doi: 10.3934/dcdss.2013.6.1391

A note on local interior regularity of a suitable weak solution to the Navier--Stokes problem

1. 

Czech Academy of Sciences, Mathematical Institute, Žitná 25, 115 67 Prague 1

Received  December 2011 Revised  January 2012 Published  March 2013

We formulate a criterion which guarantees a local regularity of a suitable weak solution $v$ to the Navier--Stokes equations (in the sense of L. Caffarelli, R. Kohn and L. Nirenberg [3]). The criterion shows that if $(x_0,t_0)$ is a singular point of solution $v$ then the $L^3$--norm of $v$ concentrates in an amount greater than or equal to some $\epsilon>0$ in an arbitrarily small neighbourhood of $x_0$ at all times $t$ in some left neighbourhood of $t_0$. As a partial result, we prove that a localized solution satisfies the strong energy inequality.
Citation: Jiří Neustupa. A note on local interior regularity of a suitable weak solution to the Navier--Stokes problem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1391-1400. doi: 10.3934/dcdss.2013.6.1391
References:
[1]

H. Amann, On the strong solvability of the Navier-Stokes equations,, J. Math. Fluid Mech., 2 (2000), 16. doi: 10.1007/s000210050018. Google Scholar

[2]

W. Borchers and H. Sohr, On the equations rot $v=g$ and div $u=f$ with zero boundary conditions,, Hokkaido Math. J., 19 (1990), 67. Google Scholar

[3]

L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations,, Comm. on Pure and Appl. Math., 35 (1982), 771. doi: 10.1002/cpa.3160350604. Google Scholar

[4]

L. Iskauriaza, G. Serëgin and V. Šverák, $L_{3,\infty}$-solutions of the Navier-Stokes equations and backward uniqueness,, Russian Math. Surveys, 58 (2003), 211. doi: 10.1070/RM2003v058n02ABEH000609. Google Scholar

[5]

R. Farwig, H. Kozono and H. Sohr, An $L^q$-approach to Stokes and Navier-Stokes equations in general domains,, Acta Math., 195 (2005), 21. doi: 10.1007/BF02588049. Google Scholar

[6]

R. Farwig, H. Kozono and H. Sohr, Energy-based regularity criteria for the Navier-Stokes equations,, J. Math. Fluid Mech., 11 (2009), 428. doi: 10.1007/s00021-008-0267-0. Google Scholar

[7]

R. Farwig, H. Kozono and H. Sohr, Criteria of local in time regularity of the Navier-Stokes equations beyond Serrin's condition,, in, 81 (2008), 175. doi: 10.4064/bc81-0-11. Google Scholar

[8]

C. Foiaş and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations,, J. Math. Pures Appl. (9), 58 (1979), 339. Google Scholar

[9]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I. Linearized Steady Problems',", Springer Tracts in Natural Philosophy, 38 (1994). doi: 10.1007/978-1-4612-5364-8. Google Scholar

[10]

G. P. Galdi, An Introduction to the Navier-Stokes initial-boundary value problem,, in, (2000), 1. Google Scholar

[11]

E. Hopf, Über die Anfangswertaufgabe für die Hydrodynamischen Grundgleichungen,, Math. Nachr., 4 (1951), 213. Google Scholar

[12]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $\mathbbR^m$, with applications to weak solutions,, Math. Z., 187 (1984), 471. doi: 10.1007/BF01174182. Google Scholar

[13]

H. Kozono and H. Sohr, Remark on uniqueness of weak solutions to the Navier-Stokes equations,, Analysis, 16 (1996), 255. Google Scholar

[14]

H. Kozono, Uniqueness and regularity of weak solutions to the Navier-Stokes equations,, in, 16 (1998), 161. Google Scholar

[15]

J. Leray, Sur le mouvements d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193. doi: 10.1007/BF02547354. Google Scholar

[16]

F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem,, Comm. on Pure and Appl. Math., 51 (1998), 241. doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A. Google Scholar

[17]

A. Mahalov, B. Nicolaenko and G. Seregin, New sufficient conditions of local regularity for solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 10 (2008), 106. doi: 10.1007/s00021-006-0220-z. Google Scholar

[18]

J. Nečas and J. Neustupa, New conditions for local regularity of a suitable weak solution to the Navier-Stokes equations,, J. Math. Fluid Mech., 4 (2002), 237. doi: 10.1007/s00021-002-8544-9. Google Scholar

[19]

J. Neustupa, Partial regularity of weak solutions to the Navier-Stokes equations in the class $L^{\infty}(0,T; L^3(\Omega)^3)$,, J. Math. Fluid Mech., 1 (1999), 309. doi: 10.1007/s000210050013. Google Scholar

[20]

J. Neustupa and P. Penel, Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier-Stokes equations,, in, (2001), 237. Google Scholar

[21]

G. Seregin and V. Šverák, On smoothness of suitable weak solutions to the Navier-Stokes equations,, J. of Math. Sci. (N. Y.), 130 (2005), 4884. doi: 10.1007/s10958-005-0383-9. Google Scholar

[22]

G. Seregin, On the local regularity for suitable weak solutions of the Navier-Stokes equations,, Russian Math. Surveys, 62 (2007), 595. doi: 10.1070/RM2007v062n03ABEH004415. Google Scholar

[23]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Rat. Mech. Anal., 9 (1962), 187. Google Scholar

[24]

J. Wolf, A direct proof of the Caffarelli-Kohn-Nirenberg theorem,, in, 81 (2008), 533. doi: 10.4064/bc81-0-34. Google Scholar

[25]

J. Wolf, A new criterion for partial regularity of suitable weak solutions to the Navier-Stokes equations,, in, (2010), 613. Google Scholar

show all references

References:
[1]

H. Amann, On the strong solvability of the Navier-Stokes equations,, J. Math. Fluid Mech., 2 (2000), 16. doi: 10.1007/s000210050018. Google Scholar

[2]

W. Borchers and H. Sohr, On the equations rot $v=g$ and div $u=f$ with zero boundary conditions,, Hokkaido Math. J., 19 (1990), 67. Google Scholar

[3]

L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations,, Comm. on Pure and Appl. Math., 35 (1982), 771. doi: 10.1002/cpa.3160350604. Google Scholar

[4]

L. Iskauriaza, G. Serëgin and V. Šverák, $L_{3,\infty}$-solutions of the Navier-Stokes equations and backward uniqueness,, Russian Math. Surveys, 58 (2003), 211. doi: 10.1070/RM2003v058n02ABEH000609. Google Scholar

[5]

R. Farwig, H. Kozono and H. Sohr, An $L^q$-approach to Stokes and Navier-Stokes equations in general domains,, Acta Math., 195 (2005), 21. doi: 10.1007/BF02588049. Google Scholar

[6]

R. Farwig, H. Kozono and H. Sohr, Energy-based regularity criteria for the Navier-Stokes equations,, J. Math. Fluid Mech., 11 (2009), 428. doi: 10.1007/s00021-008-0267-0. Google Scholar

[7]

R. Farwig, H. Kozono and H. Sohr, Criteria of local in time regularity of the Navier-Stokes equations beyond Serrin's condition,, in, 81 (2008), 175. doi: 10.4064/bc81-0-11. Google Scholar

[8]

C. Foiaş and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations,, J. Math. Pures Appl. (9), 58 (1979), 339. Google Scholar

[9]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I. Linearized Steady Problems',", Springer Tracts in Natural Philosophy, 38 (1994). doi: 10.1007/978-1-4612-5364-8. Google Scholar

[10]

G. P. Galdi, An Introduction to the Navier-Stokes initial-boundary value problem,, in, (2000), 1. Google Scholar

[11]

E. Hopf, Über die Anfangswertaufgabe für die Hydrodynamischen Grundgleichungen,, Math. Nachr., 4 (1951), 213. Google Scholar

[12]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $\mathbbR^m$, with applications to weak solutions,, Math. Z., 187 (1984), 471. doi: 10.1007/BF01174182. Google Scholar

[13]

H. Kozono and H. Sohr, Remark on uniqueness of weak solutions to the Navier-Stokes equations,, Analysis, 16 (1996), 255. Google Scholar

[14]

H. Kozono, Uniqueness and regularity of weak solutions to the Navier-Stokes equations,, in, 16 (1998), 161. Google Scholar

[15]

J. Leray, Sur le mouvements d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193. doi: 10.1007/BF02547354. Google Scholar

[16]

F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem,, Comm. on Pure and Appl. Math., 51 (1998), 241. doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A. Google Scholar

[17]

A. Mahalov, B. Nicolaenko and G. Seregin, New sufficient conditions of local regularity for solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 10 (2008), 106. doi: 10.1007/s00021-006-0220-z. Google Scholar

[18]

J. Nečas and J. Neustupa, New conditions for local regularity of a suitable weak solution to the Navier-Stokes equations,, J. Math. Fluid Mech., 4 (2002), 237. doi: 10.1007/s00021-002-8544-9. Google Scholar

[19]

J. Neustupa, Partial regularity of weak solutions to the Navier-Stokes equations in the class $L^{\infty}(0,T; L^3(\Omega)^3)$,, J. Math. Fluid Mech., 1 (1999), 309. doi: 10.1007/s000210050013. Google Scholar

[20]

J. Neustupa and P. Penel, Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier-Stokes equations,, in, (2001), 237. Google Scholar

[21]

G. Seregin and V. Šverák, On smoothness of suitable weak solutions to the Navier-Stokes equations,, J. of Math. Sci. (N. Y.), 130 (2005), 4884. doi: 10.1007/s10958-005-0383-9. Google Scholar

[22]

G. Seregin, On the local regularity for suitable weak solutions of the Navier-Stokes equations,, Russian Math. Surveys, 62 (2007), 595. doi: 10.1070/RM2007v062n03ABEH004415. Google Scholar

[23]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Rat. Mech. Anal., 9 (1962), 187. Google Scholar

[24]

J. Wolf, A direct proof of the Caffarelli-Kohn-Nirenberg theorem,, in, 81 (2008), 533. doi: 10.4064/bc81-0-34. Google Scholar

[25]

J. Wolf, A new criterion for partial regularity of suitable weak solutions to the Navier-Stokes equations,, in, (2010), 613. Google Scholar

[1]

Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053

[2]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[3]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[4]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[5]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[6]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[7]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[8]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[9]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[10]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[11]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[12]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

[13]

Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064

[14]

Wenjing Song, Ganshan Yang. The regularization of solution for the coupled Navier-Stokes and Maxwell equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2113-2127. doi: 10.3934/dcdss.2016087

[15]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[16]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[17]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[18]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[19]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[20]

Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1611-1631. doi: 10.3934/dcds.2010.27.1611

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]