August  2012, 5(4): 865-878. doi: 10.3934/dcdss.2012.5.865

A priori bounds for weak solutions to elliptic equations with nonstandard growth

1. 

Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany

2. 

Martin-Luther-Universität Halle-Wittenberg, Institut für Mathematik, Theodor-Lieser-Strasse 5, D-06120 Halle, Germany

Received  March 2011 Revised  July 2011 Published  November 2011

In this paper we study elliptic equations with a nonlinear conormal derivative boundary condition involving nonstandard growth terms. By means of the localization method and De Giorgi's iteration technique we derive global a priori bounds for weak solutions of such problems.
Citation: Patrick Winkert, Rico Zacher. A priori bounds for weak solutions to elliptic equations with nonstandard growth. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 865-878. doi: 10.3934/dcdss.2012.5.865
References:
[1]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth,, Arch. Ration. Mech. Anal., 156 (2001), 121. doi: 10.1007/s002050100117. Google Scholar

[2]

E. Acerbi and G. Mingione, Regularity results for electrorheological fluids: The stationary case,, C. R. Math. Acad. Sci. Paris, 334 (2002), 817. Google Scholar

[3]

S. N. Antontsev and L. Consiglieri, Elliptic boundary value problems with nonstandard growth conditions,, Nonlinear Anal., 71 (2009), 891. doi: 10.1016/j.na.2008.10.109. Google Scholar

[4]

S. N. Antontsev and J. F. Rodrigues, On stationary thermo-rheological viscous flows,, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 19. doi: 10.1007/s11565-006-0002-9. Google Scholar

[5]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, SIAM J. Appl. Math., 66 (2006), 1383. doi: 10.1137/050624522. Google Scholar

[6]

V. Chiadò Piat and A. Coscia, Hölder continuity of minimizers of functionals with variable growth exponent,, Manuscripta Math., 93 (1997), 283. doi: 10.1007/BF02677472. Google Scholar

[7]

E. DiBenedetto, "Degenerate Parabolic Equations,", Universitext, (1993). Google Scholar

[8]

L. Diening, "Theoretical and Numerical Results for Electrorheological Fluids,", Ph.D thesis, (2002). Google Scholar

[9]

L. Diening, F. Ettwein and M. Růžička, $C^{1,\alpha}$-regularity for electrorheological fluids in two dimensions,, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 207. doi: 10.1007/s00030-007-5026-z. Google Scholar

[10]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, "Lebesgue and Sobolev spaces with variable exponents,", Lecture Notes in Mathematics, 2017 (2011). Google Scholar

[11]

M. Eleuteri and J. Habermann, Regularity results for a class of obstacle problems under nonstandard growth conditions,, J. Math. Anal. Appl., 344 (2008), 1120. doi: 10.1016/j.jmaa.2008.03.068. Google Scholar

[12]

X. Fan, Boundary trace embedding theorems for variable exponent Sobolev spaces,, J. Math. Anal. Appl., 339 (2008), 1395. doi: 10.1016/j.jmaa.2007.08.003. Google Scholar

[13]

X. Fan, Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form,, J. Differential Equations, 235 (2007), 397. Google Scholar

[14]

X. Fan, Local boundedness of quasi-minimizers of integral functions with variable exponent anisotropic growth and applications,, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 619. doi: 10.1007/s00030-010-0072-3. Google Scholar

[15]

X. Fan and J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$,, J. Math. Anal. Appl., 262 (2001), 749. Google Scholar

[16]

X. Fan and D. Zhao, A class of De Giorgi type and Hölder continuity,, Nonlinear Anal., 36 (1999), 295. doi: 10.1016/S0362-546X(97)00628-7. Google Scholar

[17]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, J. Math. Anal. Appl., 263 (2001), 424. doi: 10.1006/jmaa.2000.7617. Google Scholar

[18]

X. Fan and D. Zhao, The quasi-minimizer of integral functionals with $m(x)$ growth conditions,, Nonlinear Anal., 39 (2000), 807. doi: 10.1016/S0362-546X(98)00239-9. Google Scholar

[19]

L. Gasiński and N. S. Papageorgiou, Anisotropic nonlinear Neumann problems,, Calc. Var. Partial Differential Equations, 42 (2011), 323. doi: 10.1007/s00526-011-0390-2. Google Scholar

[20]

J. Habermann and A. Zatorska-Goldstein, Regularity for minimizers of functionals with nonstandard growth by $\mathcalA$-harmonic approximation,, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 169. doi: 10.1007/s00030-007-7007-7. Google Scholar

[21]

P. Harjulehto, J. Kinnunen and T. Lukkari, Unbounded supersolutions of nonlinear equations with nonstandard growth,, Bound. Value Probl., (2007). Google Scholar

[22]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$,, Czechoslovak Math. J., 41(116) (1991), 592. Google Scholar

[23]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, 23 (1967). Google Scholar

[24]

V. K. Le, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces,, Nonlinear Anal., 71 (2009), 3305. doi: 10.1016/j.na.2009.01.211. Google Scholar

[25]

V. Liskevich and I. I. Skrypnik, Harnack inequality and continuity of solutions to elliptic equations with nonstandard growth conditions and lower order terms,, Ann. Mat. Pura Appl. (4), 189 (2010), 333. Google Scholar

[26]

T. Lukkari, Boundary continuity of solutions to elliptic equations with nonstandard growth,, Manuscripta Math., 132 (2010), 463. doi: 10.1007/s00229-010-0355-3. Google Scholar

[27]

T. Lukkari, Singular solutions of elliptic equations with nonstandard growth,, Math. Nachr., 282 (2009), 1770. doi: 10.1002/mana.200610822. Google Scholar

[28]

P. Pucci and R. Servadei, Regularity of weak solutions of homogeneous or inhomogeneous quasilinear elliptic equations,, Indiana Univ. Math. J., 57 (2008), 3329. doi: 10.1512/iumj.2008.57.3525. Google Scholar

[29]

K. R. Rajagopal and M. Růžička, Mathematical modeling of electrorheological materials,, Cont. Mech. and Thermodyn., 13 (2001), 59. doi: 10.1007/s001610100034. Google Scholar

[30]

W. Rudin, "Functional Analysis,", McGraw-Hill Series in Higher Mathematics, (1973). Google Scholar

[31]

M. Růžička, "Electrorheological Fluids: Modeling and Mathematical Theory,", Lecture Notes in Mathematics, 1748 (2000). Google Scholar

[32]

V. Vergara and R. Zacher, A priori bounds for degenerate and singular evolutionary partial integro-differential equations,, Nonlinear Anal., 73 (2010), 3572. doi: 10.1016/j.na.2010.07.039. Google Scholar

[33]

P. Winkert, Constant-sign and sign-changing solutions for nonlinear elliptic equations with Neumann boundary values,, Adv. Differential Equations, 15 (2010), 561. Google Scholar

[34]

P. Winkert, $L^\infty$ -estimates for nonlinear elliptic Neumann boundary value problems,, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 289. doi: 10.1007/s00030-009-0054-5. Google Scholar

[35]

V. V. Zhikov, Meyer-type estimates for solving the nonlinear Stokes system,, Differ. Equ., 33 (1997), 108. Google Scholar

[36]

V. V. Zhikov, On some variational problems,, Russian J. Math. Phys., 5 (1997), 105. Google Scholar

show all references

References:
[1]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth,, Arch. Ration. Mech. Anal., 156 (2001), 121. doi: 10.1007/s002050100117. Google Scholar

[2]

E. Acerbi and G. Mingione, Regularity results for electrorheological fluids: The stationary case,, C. R. Math. Acad. Sci. Paris, 334 (2002), 817. Google Scholar

[3]

S. N. Antontsev and L. Consiglieri, Elliptic boundary value problems with nonstandard growth conditions,, Nonlinear Anal., 71 (2009), 891. doi: 10.1016/j.na.2008.10.109. Google Scholar

[4]

S. N. Antontsev and J. F. Rodrigues, On stationary thermo-rheological viscous flows,, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 19. doi: 10.1007/s11565-006-0002-9. Google Scholar

[5]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, SIAM J. Appl. Math., 66 (2006), 1383. doi: 10.1137/050624522. Google Scholar

[6]

V. Chiadò Piat and A. Coscia, Hölder continuity of minimizers of functionals with variable growth exponent,, Manuscripta Math., 93 (1997), 283. doi: 10.1007/BF02677472. Google Scholar

[7]

E. DiBenedetto, "Degenerate Parabolic Equations,", Universitext, (1993). Google Scholar

[8]

L. Diening, "Theoretical and Numerical Results for Electrorheological Fluids,", Ph.D thesis, (2002). Google Scholar

[9]

L. Diening, F. Ettwein and M. Růžička, $C^{1,\alpha}$-regularity for electrorheological fluids in two dimensions,, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 207. doi: 10.1007/s00030-007-5026-z. Google Scholar

[10]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, "Lebesgue and Sobolev spaces with variable exponents,", Lecture Notes in Mathematics, 2017 (2011). Google Scholar

[11]

M. Eleuteri and J. Habermann, Regularity results for a class of obstacle problems under nonstandard growth conditions,, J. Math. Anal. Appl., 344 (2008), 1120. doi: 10.1016/j.jmaa.2008.03.068. Google Scholar

[12]

X. Fan, Boundary trace embedding theorems for variable exponent Sobolev spaces,, J. Math. Anal. Appl., 339 (2008), 1395. doi: 10.1016/j.jmaa.2007.08.003. Google Scholar

[13]

X. Fan, Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form,, J. Differential Equations, 235 (2007), 397. Google Scholar

[14]

X. Fan, Local boundedness of quasi-minimizers of integral functions with variable exponent anisotropic growth and applications,, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 619. doi: 10.1007/s00030-010-0072-3. Google Scholar

[15]

X. Fan and J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$,, J. Math. Anal. Appl., 262 (2001), 749. Google Scholar

[16]

X. Fan and D. Zhao, A class of De Giorgi type and Hölder continuity,, Nonlinear Anal., 36 (1999), 295. doi: 10.1016/S0362-546X(97)00628-7. Google Scholar

[17]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, J. Math. Anal. Appl., 263 (2001), 424. doi: 10.1006/jmaa.2000.7617. Google Scholar

[18]

X. Fan and D. Zhao, The quasi-minimizer of integral functionals with $m(x)$ growth conditions,, Nonlinear Anal., 39 (2000), 807. doi: 10.1016/S0362-546X(98)00239-9. Google Scholar

[19]

L. Gasiński and N. S. Papageorgiou, Anisotropic nonlinear Neumann problems,, Calc. Var. Partial Differential Equations, 42 (2011), 323. doi: 10.1007/s00526-011-0390-2. Google Scholar

[20]

J. Habermann and A. Zatorska-Goldstein, Regularity for minimizers of functionals with nonstandard growth by $\mathcalA$-harmonic approximation,, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 169. doi: 10.1007/s00030-007-7007-7. Google Scholar

[21]

P. Harjulehto, J. Kinnunen and T. Lukkari, Unbounded supersolutions of nonlinear equations with nonstandard growth,, Bound. Value Probl., (2007). Google Scholar

[22]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$,, Czechoslovak Math. J., 41(116) (1991), 592. Google Scholar

[23]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, 23 (1967). Google Scholar

[24]

V. K. Le, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces,, Nonlinear Anal., 71 (2009), 3305. doi: 10.1016/j.na.2009.01.211. Google Scholar

[25]

V. Liskevich and I. I. Skrypnik, Harnack inequality and continuity of solutions to elliptic equations with nonstandard growth conditions and lower order terms,, Ann. Mat. Pura Appl. (4), 189 (2010), 333. Google Scholar

[26]

T. Lukkari, Boundary continuity of solutions to elliptic equations with nonstandard growth,, Manuscripta Math., 132 (2010), 463. doi: 10.1007/s00229-010-0355-3. Google Scholar

[27]

T. Lukkari, Singular solutions of elliptic equations with nonstandard growth,, Math. Nachr., 282 (2009), 1770. doi: 10.1002/mana.200610822. Google Scholar

[28]

P. Pucci and R. Servadei, Regularity of weak solutions of homogeneous or inhomogeneous quasilinear elliptic equations,, Indiana Univ. Math. J., 57 (2008), 3329. doi: 10.1512/iumj.2008.57.3525. Google Scholar

[29]

K. R. Rajagopal and M. Růžička, Mathematical modeling of electrorheological materials,, Cont. Mech. and Thermodyn., 13 (2001), 59. doi: 10.1007/s001610100034. Google Scholar

[30]

W. Rudin, "Functional Analysis,", McGraw-Hill Series in Higher Mathematics, (1973). Google Scholar

[31]

M. Růžička, "Electrorheological Fluids: Modeling and Mathematical Theory,", Lecture Notes in Mathematics, 1748 (2000). Google Scholar

[32]

V. Vergara and R. Zacher, A priori bounds for degenerate and singular evolutionary partial integro-differential equations,, Nonlinear Anal., 73 (2010), 3572. doi: 10.1016/j.na.2010.07.039. Google Scholar

[33]

P. Winkert, Constant-sign and sign-changing solutions for nonlinear elliptic equations with Neumann boundary values,, Adv. Differential Equations, 15 (2010), 561. Google Scholar

[34]

P. Winkert, $L^\infty$ -estimates for nonlinear elliptic Neumann boundary value problems,, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 289. doi: 10.1007/s00030-009-0054-5. Google Scholar

[35]

V. V. Zhikov, Meyer-type estimates for solving the nonlinear Stokes system,, Differ. Equ., 33 (1997), 108. Google Scholar

[36]

V. V. Zhikov, On some variational problems,, Russian J. Math. Phys., 5 (1997), 105. Google Scholar

[1]

SYLWIA DUDEK, IWONA SKRZYPCZAK. Liouville theorems for elliptic problems in variable exponent spaces. Communications on Pure & Applied Analysis, 2017, 16 (2) : 513-532. doi: 10.3934/cpaa.2017026

[2]

Tomasz Adamowicz, Przemysław Górka. The Liouville theorems for elliptic equations with nonstandard growth. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2377-2392. doi: 10.3934/cpaa.2015.14.2377

[3]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[4]

Luis A. Caffarelli, Alexis F. Vasseur. The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 409-427. doi: 10.3934/dcdss.2010.3.409

[5]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[6]

Li Yin, Jinghua Yao, Qihu Zhang, Chunshan Zhao. Multiple solutions with constant sign of a Dirichlet problem for a class of elliptic systems with variable exponent growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2207-2226. doi: 10.3934/dcds.2017095

[7]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[8]

Jianguo Huang, Jun Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 145-170. doi: 10.3934/dcdsb.2007.7.145

[9]

Gui-Dong Li, Chun-Lei Tang. Existence of positive ground state solutions for Choquard equation with variable exponent growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2035-2050. doi: 10.3934/dcdss.2019131

[10]

Carla Baroncini, Julián Fernández Bonder. An extension of a Theorem of V. Šverák to variable exponent spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1987-2007. doi: 10.3934/cpaa.2015.14.1987

[11]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[12]

Changfeng Gui. On some problems related to de Giorgi’s conjecture. Communications on Pure & Applied Analysis, 2003, 2 (1) : 101-106. doi: 10.3934/cpaa.2003.2.101

[13]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

[14]

Paolo Baroni, Agnese Di Castro, Giampiero Palatucci. Intrinsic geometry and De Giorgi classes for certain anisotropic problems. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 647-659. doi: 10.3934/dcdss.2017032

[15]

Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731

[16]

Alfonso Castro, Rosa Pardo. A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 783-790. doi: 10.3934/dcdsb.2017038

[17]

P. Cerejeiras, U. Kähler, M. M. Rodrigues, N. Vieira. Hodge type decomposition in variable exponent spaces for the time-dependent operators: the Schrödinger case. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2253-2272. doi: 10.3934/cpaa.2014.13.2253

[18]

Maria-Magdalena Boureanu. Fourth-order problems with Leray-Lions type operators in variable exponent spaces. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 231-243. doi: 10.3934/dcdss.2019016

[19]

Stanislav Antontsev, Michel Chipot, Sergey Shmarev. Uniqueness and comparison theorems for solutions of doubly nonlinear parabolic equations with nonstandard growth conditions. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1527-1546. doi: 10.3934/cpaa.2013.12.1527

[20]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]