August  2012, 5(4): 797-808. doi: 10.3934/dcdss.2012.5.797

Stable and unstable initial configuration in the theory wave fronts

1. 

University of Oklahoma, Noman, OK 73019, United States

Received  March 2011 Revised  May 2011 Published  November 2011

In this paper we study the wavefront like phase transition of solutions of a parabolic nonlinear boundary value problem used to model phase transitions in the theory of boiling liquids. Using weak supersolutions we provide bounds for the propagation speed of such a phase transition. Also we construct stable supersolutions to initial configurations which have locally supercritical values.
Citation: Ruediger Landes. Stable and unstable initial configuration in the theory wave fronts. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 797-808. doi: 10.3934/dcdss.2012.5.797
References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33. doi: 10.1016/0001-8708(78)90130-5. Google Scholar

[2]

H. Auracher, W. Marquardt, M. Buchholz, R. Hohl, T. Lüttich and J. Blum, New experimental results on steady-state and transient pool boiling heat transfer,, Therm. Sci. Engng, 9 (2001), 29. Google Scholar

[3]

J. Blum, T. Lüttich and W. Marquardt, Temperature Wave Propagation as a Route from Nucleate to Film Boiling?,, In, 1 (1999), 137. Google Scholar

[4]

V. K. Dhir, Boiling heat transfer,, Annu. Rev. Fluid Mech., 30 (1998), 365. doi: 10.1146/annurev.fluid.30.1.365. Google Scholar

[5]

P. Fife, "Mathematical Aspects of Reacting and Diffusing Systems,", Lecture Notes in Biomathematics, 28 (1979). Google Scholar

[6]

R. Landes, Wavefront solution in the theory of boiling liquids,, Analysis (Munich), 29 (2009), 283. Google Scholar

[7]

T. Lüttich, W. Marquardt, M. Buchholz and H. Auracher, "Towards a Unifying Heat Transfer Correlation for the Entire Boiling Curve,", 5th International Conference on Boiling Heat Transfer, (2003). Google Scholar

[8]

M. Speetjens, A. Reusken and W. Marquardt, Steady-state solutions in a nonlinear pool boiling model,, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 1475. doi: 10.1016/j.cnsns.2006.11.001. Google Scholar

[9]

M. Speetjens, A. Reusken and W. Marquardt, Steady-state solutions in a three-dimensional nonlinear pool-boiling heat-transfer model,, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 1518. doi: 10.1016/j.cnsns.2006.11.002. Google Scholar

[10]

J. R. Thome, Boiling,, in, (2003), 635. Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33. doi: 10.1016/0001-8708(78)90130-5. Google Scholar

[2]

H. Auracher, W. Marquardt, M. Buchholz, R. Hohl, T. Lüttich and J. Blum, New experimental results on steady-state and transient pool boiling heat transfer,, Therm. Sci. Engng, 9 (2001), 29. Google Scholar

[3]

J. Blum, T. Lüttich and W. Marquardt, Temperature Wave Propagation as a Route from Nucleate to Film Boiling?,, In, 1 (1999), 137. Google Scholar

[4]

V. K. Dhir, Boiling heat transfer,, Annu. Rev. Fluid Mech., 30 (1998), 365. doi: 10.1146/annurev.fluid.30.1.365. Google Scholar

[5]

P. Fife, "Mathematical Aspects of Reacting and Diffusing Systems,", Lecture Notes in Biomathematics, 28 (1979). Google Scholar

[6]

R. Landes, Wavefront solution in the theory of boiling liquids,, Analysis (Munich), 29 (2009), 283. Google Scholar

[7]

T. Lüttich, W. Marquardt, M. Buchholz and H. Auracher, "Towards a Unifying Heat Transfer Correlation for the Entire Boiling Curve,", 5th International Conference on Boiling Heat Transfer, (2003). Google Scholar

[8]

M. Speetjens, A. Reusken and W. Marquardt, Steady-state solutions in a nonlinear pool boiling model,, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 1475. doi: 10.1016/j.cnsns.2006.11.001. Google Scholar

[9]

M. Speetjens, A. Reusken and W. Marquardt, Steady-state solutions in a three-dimensional nonlinear pool-boiling heat-transfer model,, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 1518. doi: 10.1016/j.cnsns.2006.11.002. Google Scholar

[10]

J. R. Thome, Boiling,, in, (2003), 635. Google Scholar

[1]

Dung Le. Strong positivity of continuous supersolutions to parabolic equations with rough boundary data. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1521-1530. doi: 10.3934/dcds.2015.35.1521

[2]

Mahamadi Warma. Semi linear parabolic equations with nonlinear general Wentzell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5493-5506. doi: 10.3934/dcds.2013.33.5493

[3]

Alexandre Nolasco de Carvalho, Marcos Roberto Teixeira Primo. Spatial homogeneity in parabolic problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2004, 3 (4) : 637-651. doi: 10.3934/cpaa.2004.3.637

[4]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[5]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 763-800. doi: 10.3934/dcds.2008.21.763

[6]

Asadollah Aghajani, Craig Cowan. Explicit estimates on positive supersolutions of nonlinear elliptic equations and applications. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2731-2742. doi: 10.3934/dcds.2019114

[7]

Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432

[8]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[9]

Giuseppe Da Prato, Alessandra Lunardi. On a class of elliptic and parabolic equations in convex domains without boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 933-953. doi: 10.3934/dcds.2008.22.933

[10]

Ciprian G. Gal, Mahamadi Warma. Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evolution Equations & Control Theory, 2016, 5 (1) : 61-103. doi: 10.3934/eect.2016.5.61

[11]

B. Abdellaoui, E. Colorado, I. Peral. Existence and nonexistence results for a class of parabolic equations with mixed boundary conditions. Communications on Pure & Applied Analysis, 2006, 5 (1) : 29-54. doi: 10.3934/cpaa.2006.5.29

[12]

Raluca Clendenen, Gisèle Ruiz Goldstein, Jerome A. Goldstein. Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 651-660. doi: 10.3934/dcdss.2016019

[13]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[14]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[15]

Shu Luan. On the existence of optimal control for semilinear elliptic equations with nonlinear neumann boundary conditions. Mathematical Control & Related Fields, 2017, 7 (3) : 493-506. doi: 10.3934/mcrf.2017018

[16]

Junichi Harada, Mitsuharu Ôtani. $H^2$-solutions for some elliptic equations with nonlinear boundary conditions. Conference Publications, 2009, 2009 (Special) : 333-339. doi: 10.3934/proc.2009.2009.333

[17]

Chunlai Mu, Zhaoyin Xiang. Blowup behaviors for degenerate parabolic equations coupled via nonlinear boundary flux. Communications on Pure & Applied Analysis, 2007, 6 (2) : 487-503. doi: 10.3934/cpaa.2007.6.487

[18]

Roland Schnaubelt. Center manifolds and attractivity for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1193-1230. doi: 10.3934/dcds.2015.35.1193

[19]

Joachim von Below, Gaëlle Pincet Mailly. Blow up for some nonlinear parabolic problems with convection under dynamical boundary conditions. Conference Publications, 2007, 2007 (Special) : 1031-1041. doi: 10.3934/proc.2007.2007.1031

[20]

Yuri Latushkin, Jan Prüss, Ronald Schnaubelt. Center manifolds and dynamics near equilibria of quasilinear parabolic systems with fully nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 595-633. doi: 10.3934/dcdsb.2008.9.595

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]